Metamath Proof Explorer


Theorem rpvmasum

Description: The sum of the von Mangoldt function over those integers n == A (mod N ) is asymptotic to log x / phi ( x ) + O(1) . Equation 9.4.3 of Shapiro, p. 375. (Contributed by Mario Carneiro, 2-May-2016) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum.u U=UnitZ
rpvmasum.b φAU
rpvmasum.t T=L-1A
Assertion rpvmasum φx+ϕNn1xTΛnnlogx𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum.u U=UnitZ
5 rpvmasum.b φAU
6 rpvmasum.t T=L-1A
7 3 adantr φfyBaseDChrN0DChrN|myLmm=0N
8 eqid DChrN=DChrN
9 eqid BaseDChrN=BaseDChrN
10 eqid 0DChrN=0DChrN
11 2fveq3 m=nyLm=yLn
12 id m=nm=n
13 11 12 oveq12d m=nyLmm=yLnn
14 13 cbvsumv myLmm=nyLnn
15 14 eqeq1i myLmm=0nyLnn=0
16 15 rabbii yBaseDChrN0DChrN|myLmm=0=yBaseDChrN0DChrN|nyLnn=0
17 simpr φfyBaseDChrN0DChrN|myLmm=0fyBaseDChrN0DChrN|myLmm=0
18 1 2 7 8 9 10 16 17 dchrisum0 ¬φfyBaseDChrN0DChrN|myLmm=0
19 18 imnani φ¬fyBaseDChrN0DChrN|myLmm=0
20 19 eq0rdv φyBaseDChrN0DChrN|myLmm=0=
21 20 fveq2d φyBaseDChrN0DChrN|myLmm=0=
22 hash0 =0
23 21 22 eqtrdi φyBaseDChrN0DChrN|myLmm=0=0
24 23 oveq2d φ1yBaseDChrN0DChrN|myLmm=0=10
25 1m0e1 10=1
26 24 25 eqtrdi φ1yBaseDChrN0DChrN|myLmm=0=1
27 26 adantr φx+1yBaseDChrN0DChrN|myLmm=0=1
28 27 oveq2d φx+logx1yBaseDChrN0DChrN|myLmm=0=logx1
29 relogcl x+logx
30 29 adantl φx+logx
31 30 recnd φx+logx
32 31 mulridd φx+logx1=logx
33 28 32 eqtrd φx+logx1yBaseDChrN0DChrN|myLmm=0=logx
34 33 oveq2d φx+ϕNn1xTΛnnlogx1yBaseDChrN0DChrN|myLmm=0=ϕNn1xTΛnnlogx
35 34 mpteq2dva φx+ϕNn1xTΛnnlogx1yBaseDChrN0DChrN|myLmm=0=x+ϕNn1xTΛnnlogx
36 eqid yBaseDChrN0DChrN|myLmm=0=yBaseDChrN0DChrN|myLmm=0
37 18 pm2.21i φfyBaseDChrN0DChrN|myLmm=0A=1Z
38 1 2 3 8 9 10 36 4 5 6 37 rpvmasum2 φx+ϕNn1xTΛnnlogx1yBaseDChrN0DChrN|myLmm=0𝑂1
39 35 38 eqeltrrd φx+ϕNn1xTΛnnlogx𝑂1