Metamath Proof Explorer


Theorem rpvmasum2

Description: A partial result along the lines of rpvmasum . The sum of the von Mangoldt function over those integers n == A (mod N ) is asymptotic to ( 1 - M ) ( log x / phi ( x ) ) + O(1) , where M is the number of non-principal Dirichlet characters with sum_ n e. NN , X ( n ) / n = 0 . Our goal is to show this set is empty. Equation 9.4.3 of Shapiro, p. 375. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum2.g G = DChr N
rpvmasum2.d D = Base G
rpvmasum2.1 1 ˙ = 0 G
rpvmasum2.w W = y D 1 ˙ | m y L m m = 0
rpvmasum2.u U = Unit Z
rpvmasum2.b φ A U
rpvmasum2.t T = L -1 A
rpvmasum2.z1 φ f W A = 1 Z
Assertion rpvmasum2 φ x + ϕ N n 1 x T Λ n n log x 1 W 𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum2.g G = DChr N
5 rpvmasum2.d D = Base G
6 rpvmasum2.1 1 ˙ = 0 G
7 rpvmasum2.w W = y D 1 ˙ | m y L m m = 0
8 rpvmasum2.u U = Unit Z
9 rpvmasum2.b φ A U
10 rpvmasum2.t T = L -1 A
11 rpvmasum2.z1 φ f W A = 1 Z
12 3 adantr φ x + N
13 4 5 dchrfi N D Fin
14 12 13 syl φ x + D Fin
15 fzfid φ x + f D 1 x Fin
16 eqid Base Z = Base Z
17 simpr φ f D f D
18 4 1 5 16 17 dchrf φ f D f : Base Z
19 16 8 unitss U Base Z
20 19 9 sselid φ A Base Z
21 20 adantr φ f D A Base Z
22 18 21 ffvelrnd φ f D f A
23 22 cjcld φ f D f A
24 23 adantlr φ x + f D f A
25 24 adantrl φ x + n 1 x f D f A
26 18 ad4ant14 φ x + n 1 x f D f : Base Z
27 3 nnnn0d φ N 0
28 1 16 2 znzrhfo N 0 L : onto Base Z
29 fof L : onto Base Z L : Base Z
30 27 28 29 3syl φ L : Base Z
31 30 adantr φ x + L : Base Z
32 elfzelz n 1 x n
33 ffvelrn L : Base Z n L n Base Z
34 31 32 33 syl2an φ x + n 1 x L n Base Z
35 34 adantr φ x + n 1 x f D L n Base Z
36 26 35 ffvelrnd φ x + n 1 x f D f L n
37 36 anasss φ x + n 1 x f D f L n
38 elfznn n 1 x n
39 38 adantl φ x + n 1 x n
40 vmacl n Λ n
41 39 40 syl φ x + n 1 x Λ n
42 41 39 nndivred φ x + n 1 x Λ n n
43 42 recnd φ x + n 1 x Λ n n
44 43 adantrr φ x + n 1 x f D Λ n n
45 37 44 mulcld φ x + n 1 x f D f L n Λ n n
46 25 45 mulcld φ x + n 1 x f D f A f L n Λ n n
47 46 anass1rs φ x + f D n 1 x f A f L n Λ n n
48 15 47 fsumcl φ x + f D n = 1 x f A f L n Λ n n
49 relogcl x + log x
50 49 adantl φ x + log x
51 50 recnd φ x + log x
52 51 adantr φ x + f D log x
53 ax-1cn 1
54 neg1cn 1
55 0cn 0
56 54 55 ifcli if f W 1 0
57 53 56 ifcli if f = 1 ˙ 1 if f W 1 0
58 mulcl log x if f = 1 ˙ 1 if f W 1 0 log x if f = 1 ˙ 1 if f W 1 0
59 52 57 58 sylancl φ x + f D log x if f = 1 ˙ 1 if f W 1 0
60 14 48 59 fsumsub φ x + f D n = 1 x f A f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 = f D n = 1 x f A f L n Λ n n f D log x if f = 1 ˙ 1 if f W 1 0
61 45 anass1rs φ x + f D n 1 x f L n Λ n n
62 15 61 fsumcl φ x + f D n = 1 x f L n Λ n n
63 24 62 59 subdid φ x + f D f A n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 = f A n = 1 x f L n Λ n n f A log x if f = 1 ˙ 1 if f W 1 0
64 15 24 61 fsummulc2 φ x + f D f A n = 1 x f L n Λ n n = n = 1 x f A f L n Λ n n
65 57 a1i φ x + f D if f = 1 ˙ 1 if f W 1 0
66 24 52 65 mul12d φ x + f D f A log x if f = 1 ˙ 1 if f W 1 0 = log x f A if f = 1 ˙ 1 if f W 1 0
67 ovif2 f A if f = 1 ˙ 1 if f W 1 0 = if f = 1 ˙ f A 1 f A if f W 1 0
68 fveq1 f = 1 ˙ f A = 1 ˙ A
69 3 ad2antrr φ x + f D N
70 9 ad2antrr φ x + f D A U
71 4 1 6 8 69 70 dchr1 φ x + f D 1 ˙ A = 1
72 68 71 sylan9eqr φ x + f D f = 1 ˙ f A = 1
73 72 fveq2d φ x + f D f = 1 ˙ f A = 1
74 1re 1
75 cjre 1 1 = 1
76 74 75 ax-mp 1 = 1
77 73 76 eqtrdi φ x + f D f = 1 ˙ f A = 1
78 77 oveq1d φ x + f D f = 1 ˙ f A 1 = 1 1
79 1t1e1 1 1 = 1
80 78 79 eqtrdi φ x + f D f = 1 ˙ f A 1 = 1
81 df-ne f 1 ˙ ¬ f = 1 ˙
82 ovif2 f A if f W 1 0 = if f W f A -1 f A 0
83 11 fveq2d φ f W f A = f 1 Z
84 83 ad5ant15 φ x + f D f 1 ˙ f W f A = f 1 Z
85 4 1 5 dchrmhm D mulGrp Z MndHom mulGrp fld
86 simpr φ x + f D f D
87 85 86 sselid φ x + f D f mulGrp Z MndHom mulGrp fld
88 eqid mulGrp Z = mulGrp Z
89 eqid 1 Z = 1 Z
90 88 89 ringidval 1 Z = 0 mulGrp Z
91 eqid mulGrp fld = mulGrp fld
92 cnfld1 1 = 1 fld
93 91 92 ringidval 1 = 0 mulGrp fld
94 90 93 mhm0 f mulGrp Z MndHom mulGrp fld f 1 Z = 1
95 87 94 syl φ x + f D f 1 Z = 1
96 95 ad2antrr φ x + f D f 1 ˙ f W f 1 Z = 1
97 84 96 eqtrd φ x + f D f 1 ˙ f W f A = 1
98 97 fveq2d φ x + f D f 1 ˙ f W f A = 1
99 98 76 eqtrdi φ x + f D f 1 ˙ f W f A = 1
100 99 oveq1d φ x + f D f 1 ˙ f W f A -1 = 1 -1
101 54 mulid2i 1 -1 = 1
102 100 101 eqtrdi φ x + f D f 1 ˙ f W f A -1 = 1
103 102 ifeq1da φ x + f D f 1 ˙ if f W f A -1 f A 0 = if f W 1 f A 0
104 24 adantr φ x + f D f 1 ˙ f A
105 104 mul01d φ x + f D f 1 ˙ f A 0 = 0
106 105 ifeq2d φ x + f D f 1 ˙ if f W 1 f A 0 = if f W 1 0
107 103 106 eqtrd φ x + f D f 1 ˙ if f W f A -1 f A 0 = if f W 1 0
108 82 107 eqtrid φ x + f D f 1 ˙ f A if f W 1 0 = if f W 1 0
109 81 108 sylan2br φ x + f D ¬ f = 1 ˙ f A if f W 1 0 = if f W 1 0
110 80 109 ifeq12da φ x + f D if f = 1 ˙ f A 1 f A if f W 1 0 = if f = 1 ˙ 1 if f W 1 0
111 67 110 eqtrid φ x + f D f A if f = 1 ˙ 1 if f W 1 0 = if f = 1 ˙ 1 if f W 1 0
112 111 oveq2d φ x + f D log x f A if f = 1 ˙ 1 if f W 1 0 = log x if f = 1 ˙ 1 if f W 1 0
113 66 112 eqtrd φ x + f D f A log x if f = 1 ˙ 1 if f W 1 0 = log x if f = 1 ˙ 1 if f W 1 0
114 64 113 oveq12d φ x + f D f A n = 1 x f L n Λ n n f A log x if f = 1 ˙ 1 if f W 1 0 = n = 1 x f A f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0
115 63 114 eqtrd φ x + f D f A n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 = n = 1 x f A f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0
116 115 sumeq2dv φ x + f D f A n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 = f D n = 1 x f A f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0
117 fzfid φ x + 1 x Fin
118 inss1 1 x T 1 x
119 ssfi 1 x Fin 1 x T 1 x 1 x T Fin
120 117 118 119 sylancl φ x + 1 x T Fin
121 12 phicld φ x + ϕ N
122 121 nncnd φ x + ϕ N
123 118 a1i φ x + 1 x T 1 x
124 123 sselda φ x + n 1 x T n 1 x
125 124 43 syldan φ x + n 1 x T Λ n n
126 120 122 125 fsummulc2 φ x + ϕ N n 1 x T Λ n n = n 1 x T ϕ N Λ n n
127 122 adantr φ x + n 1 x ϕ N
128 127 43 mulcld φ x + n 1 x ϕ N Λ n n
129 124 128 syldan φ x + n 1 x T ϕ N Λ n n
130 129 ralrimiva φ x + n 1 x T ϕ N Λ n n
131 117 olcd φ x + 1 x 1 1 x Fin
132 sumss2 1 x T 1 x n 1 x T ϕ N Λ n n 1 x 1 1 x Fin n 1 x T ϕ N Λ n n = n = 1 x if n 1 x T ϕ N Λ n n 0
133 123 130 131 132 syl21anc φ x + n 1 x T ϕ N Λ n n = n = 1 x if n 1 x T ϕ N Λ n n 0
134 elin n 1 x T n 1 x n T
135 134 baib n 1 x n 1 x T n T
136 135 adantl φ x + n 1 x n 1 x T n T
137 10 eleq2i n T n L -1 A
138 31 ffnd φ x + L Fn
139 fniniseg L Fn n L -1 A n L n = A
140 139 baibd L Fn n n L -1 A L n = A
141 138 32 140 syl2an φ x + n 1 x n L -1 A L n = A
142 137 141 syl5bb φ x + n 1 x n T L n = A
143 136 142 bitr2d φ x + n 1 x L n = A n 1 x T
144 43 mul02d φ x + n 1 x 0 Λ n n = 0
145 143 144 ifbieq2d φ x + n 1 x if L n = A ϕ N Λ n n 0 Λ n n = if n 1 x T ϕ N Λ n n 0
146 ovif if L n = A ϕ N 0 Λ n n = if L n = A ϕ N Λ n n 0 Λ n n
147 3 ad2antrr φ x + n 1 x N
148 147 13 syl φ x + n 1 x D Fin
149 23 ad4ant14 φ x + n 1 x f D f A
150 36 149 mulcld φ x + n 1 x f D f L n f A
151 148 43 150 fsummulc1 φ x + n 1 x f D f L n f A Λ n n = f D f L n f A Λ n n
152 9 ad2antrr φ x + n 1 x A U
153 4 5 1 16 8 147 34 152 sum2dchr φ x + n 1 x f D f L n f A = if L n = A ϕ N 0
154 153 oveq1d φ x + n 1 x f D f L n f A Λ n n = if L n = A ϕ N 0 Λ n n
155 43 adantr φ x + n 1 x f D Λ n n
156 mulass f L n f A Λ n n f L n f A Λ n n = f L n f A Λ n n
157 mul12 f L n f A Λ n n f L n f A Λ n n = f A f L n Λ n n
158 156 157 eqtrd f L n f A Λ n n f L n f A Λ n n = f A f L n Λ n n
159 36 149 155 158 syl3anc φ x + n 1 x f D f L n f A Λ n n = f A f L n Λ n n
160 159 sumeq2dv φ x + n 1 x f D f L n f A Λ n n = f D f A f L n Λ n n
161 151 154 160 3eqtr3d φ x + n 1 x if L n = A ϕ N 0 Λ n n = f D f A f L n Λ n n
162 146 161 eqtr3id φ x + n 1 x if L n = A ϕ N Λ n n 0 Λ n n = f D f A f L n Λ n n
163 145 162 eqtr3d φ x + n 1 x if n 1 x T ϕ N Λ n n 0 = f D f A f L n Λ n n
164 163 sumeq2dv φ x + n = 1 x if n 1 x T ϕ N Λ n n 0 = n = 1 x f D f A f L n Λ n n
165 126 133 164 3eqtrd φ x + ϕ N n 1 x T Λ n n = n = 1 x f D f A f L n Λ n n
166 117 14 46 fsumcom φ x + n = 1 x f D f A f L n Λ n n = f D n = 1 x f A f L n Λ n n
167 165 166 eqtrd φ x + ϕ N n 1 x T Λ n n = f D n = 1 x f A f L n Λ n n
168 4 dchrabl N G Abel
169 ablgrp G Abel G Grp
170 5 6 grpidcl G Grp 1 ˙ D
171 12 168 169 170 4syl φ x + 1 ˙ D
172 51 mulid1d φ x + log x 1 = log x
173 172 51 eqeltrd φ x + log x 1
174 iftrue f = 1 ˙ if f = 1 ˙ 1 if f W 1 0 = 1
175 174 oveq2d f = 1 ˙ log x if f = 1 ˙ 1 if f W 1 0 = log x 1
176 175 sumsn 1 ˙ D log x 1 f 1 ˙ log x if f = 1 ˙ 1 if f W 1 0 = log x 1
177 171 173 176 syl2anc φ x + f 1 ˙ log x if f = 1 ˙ 1 if f W 1 0 = log x 1
178 eldifsn f D 1 ˙ f D f 1 ˙
179 ifnefalse f 1 ˙ if f = 1 ˙ 1 if f W 1 0 = if f W 1 0
180 179 ad2antll φ x + f D f 1 ˙ if f = 1 ˙ 1 if f W 1 0 = if f W 1 0
181 negeq if f W 1 0 = 1 if f W 1 0 = 1
182 negeq if f W 1 0 = 0 if f W 1 0 = 0
183 neg0 0 = 0
184 182 183 eqtrdi if f W 1 0 = 0 if f W 1 0 = 0
185 181 184 ifsb if f W 1 0 = if f W 1 0
186 180 185 eqtr4di φ x + f D f 1 ˙ if f = 1 ˙ 1 if f W 1 0 = if f W 1 0
187 186 oveq2d φ x + f D f 1 ˙ log x if f = 1 ˙ 1 if f W 1 0 = log x if f W 1 0
188 51 adantr φ x + f D f 1 ˙ log x
189 53 55 ifcli if f W 1 0
190 mulneg2 log x if f W 1 0 log x if f W 1 0 = log x if f W 1 0
191 188 189 190 sylancl φ x + f D f 1 ˙ log x if f W 1 0 = log x if f W 1 0
192 187 191 eqtrd φ x + f D f 1 ˙ log x if f = 1 ˙ 1 if f W 1 0 = log x if f W 1 0
193 178 192 sylan2b φ x + f D 1 ˙ log x if f = 1 ˙ 1 if f W 1 0 = log x if f W 1 0
194 193 sumeq2dv φ x + f D 1 ˙ log x if f = 1 ˙ 1 if f W 1 0 = f D 1 ˙ log x if f W 1 0
195 diffi D Fin D 1 ˙ Fin
196 14 195 syl φ x + D 1 ˙ Fin
197 51 adantr φ x + f D 1 ˙ log x
198 mulcl log x if f W 1 0 log x if f W 1 0
199 197 189 198 sylancl φ x + f D 1 ˙ log x if f W 1 0
200 196 199 fsumneg φ x + f D 1 ˙ log x if f W 1 0 = f D 1 ˙ log x if f W 1 0
201 189 a1i φ x + f D 1 ˙ if f W 1 0
202 196 51 201 fsummulc2 φ x + log x f D 1 ˙ if f W 1 0 = f D 1 ˙ log x if f W 1 0
203 7 ssrab3 W D 1 ˙
204 difss D 1 ˙ D
205 203 204 sstri W D
206 ssfi D Fin W D W Fin
207 14 205 206 sylancl φ x + W Fin
208 fsumconst W Fin 1 f W 1 = W 1
209 207 53 208 sylancl φ x + f W 1 = W 1
210 203 a1i φ x + W D 1 ˙
211 53 a1i φ x + 1
212 211 ralrimivw φ x + f W 1
213 196 olcd φ x + D 1 ˙ 1 D 1 ˙ Fin
214 sumss2 W D 1 ˙ f W 1 D 1 ˙ 1 D 1 ˙ Fin f W 1 = f D 1 ˙ if f W 1 0
215 210 212 213 214 syl21anc φ x + f W 1 = f D 1 ˙ if f W 1 0
216 hashcl W Fin W 0
217 207 216 syl φ x + W 0
218 217 nn0cnd φ x + W
219 218 mulid1d φ x + W 1 = W
220 209 215 219 3eqtr3d φ x + f D 1 ˙ if f W 1 0 = W
221 220 oveq2d φ x + log x f D 1 ˙ if f W 1 0 = log x W
222 202 221 eqtr3d φ x + f D 1 ˙ log x if f W 1 0 = log x W
223 222 negeqd φ x + f D 1 ˙ log x if f W 1 0 = log x W
224 194 200 223 3eqtrd φ x + f D 1 ˙ log x if f = 1 ˙ 1 if f W 1 0 = log x W
225 177 224 oveq12d φ x + f 1 ˙ log x if f = 1 ˙ 1 if f W 1 0 + f D 1 ˙ log x if f = 1 ˙ 1 if f W 1 0 = log x 1 + log x W
226 51 218 mulcld φ x + log x W
227 173 226 negsubd φ x + log x 1 + log x W = log x 1 log x W
228 225 227 eqtrd φ x + f 1 ˙ log x if f = 1 ˙ 1 if f W 1 0 + f D 1 ˙ log x if f = 1 ˙ 1 if f W 1 0 = log x 1 log x W
229 disjdif 1 ˙ D 1 ˙ =
230 229 a1i φ x + 1 ˙ D 1 ˙ =
231 undif2 1 ˙ D 1 ˙ = 1 ˙ D
232 171 snssd φ x + 1 ˙ D
233 ssequn1 1 ˙ D 1 ˙ D = D
234 232 233 sylib φ x + 1 ˙ D = D
235 231 234 eqtr2id φ x + D = 1 ˙ D 1 ˙
236 230 235 14 59 fsumsplit φ x + f D log x if f = 1 ˙ 1 if f W 1 0 = f 1 ˙ log x if f = 1 ˙ 1 if f W 1 0 + f D 1 ˙ log x if f = 1 ˙ 1 if f W 1 0
237 51 211 218 subdid φ x + log x 1 W = log x 1 log x W
238 228 236 237 3eqtr4rd φ x + log x 1 W = f D log x if f = 1 ˙ 1 if f W 1 0
239 167 238 oveq12d φ x + ϕ N n 1 x T Λ n n log x 1 W = f D n = 1 x f A f L n Λ n n f D log x if f = 1 ˙ 1 if f W 1 0
240 60 116 239 3eqtr4d φ x + f D f A n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 = ϕ N n 1 x T Λ n n log x 1 W
241 240 mpteq2dva φ x + f D f A n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 = x + ϕ N n 1 x T Λ n n log x 1 W
242 rpssre +
243 242 a1i φ +
244 3 13 syl φ D Fin
245 22 adantlr φ x + f D f A
246 245 cjcld φ x + f D f A
247 62 59 subcld φ x + f D n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0
248 246 247 mulcld φ x + f D f A n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0
249 248 anasss φ x + f D f A n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0
250 23 adantr φ f D x + f A
251 247 an32s φ f D x + n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0
252 o1const + f A x + f A 𝑂1
253 242 23 252 sylancr φ f D x + f A 𝑂1
254 fveq1 f = 1 ˙ f L n = 1 ˙ L n
255 254 oveq1d f = 1 ˙ f L n Λ n n = 1 ˙ L n Λ n n
256 255 sumeq2sdv f = 1 ˙ n = 1 x f L n Λ n n = n = 1 x 1 ˙ L n Λ n n
257 256 175 oveq12d f = 1 ˙ n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 = n = 1 x 1 ˙ L n Λ n n log x 1
258 257 adantl φ f D f = 1 ˙ n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 = n = 1 x 1 ˙ L n Λ n n log x 1
259 49 recnd x + log x
260 259 mulid1d x + log x 1 = log x
261 260 oveq2d x + n = 1 x 1 ˙ L n Λ n n log x 1 = n = 1 x 1 ˙ L n Λ n n log x
262 258 261 sylan9eq φ f D f = 1 ˙ x + n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 = n = 1 x 1 ˙ L n Λ n n log x
263 262 mpteq2dva φ f D f = 1 ˙ x + n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 = x + n = 1 x 1 ˙ L n Λ n n log x
264 1 2 3 4 5 6 rpvmasumlem φ x + n = 1 x 1 ˙ L n Λ n n log x 𝑂1
265 264 ad2antrr φ f D f = 1 ˙ x + n = 1 x 1 ˙ L n Λ n n log x 𝑂1
266 263 265 eqeltrd φ f D f = 1 ˙ x + n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 𝑂1
267 179 oveq2d f 1 ˙ log x if f = 1 ˙ 1 if f W 1 0 = log x if f W 1 0
268 267 oveq2d f 1 ˙ n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 = n = 1 x f L n Λ n n log x if f W 1 0
269 51 adantlr φ f D x + log x
270 mulcom log x 1 log x -1 = -1 log x
271 269 54 270 sylancl φ f D x + log x -1 = -1 log x
272 269 mulm1d φ f D x + -1 log x = log x
273 271 272 eqtrd φ f D x + log x -1 = log x
274 269 mul01d φ f D x + log x 0 = 0
275 273 274 ifeq12d φ f D x + if f W log x -1 log x 0 = if f W log x 0
276 ovif2 log x if f W 1 0 = if f W log x -1 log x 0
277 negeq if f W log x 0 = log x if f W log x 0 = log x
278 negeq if f W log x 0 = 0 if f W log x 0 = 0
279 278 183 eqtrdi if f W log x 0 = 0 if f W log x 0 = 0
280 277 279 ifsb if f W log x 0 = if f W log x 0
281 275 276 280 3eqtr4g φ f D x + log x if f W 1 0 = if f W log x 0
282 281 oveq2d φ f D x + n = 1 x f L n Λ n n log x if f W 1 0 = n = 1 x f L n Λ n n if f W log x 0
283 62 an32s φ f D x + n = 1 x f L n Λ n n
284 ifcl log x 0 if f W log x 0
285 269 55 284 sylancl φ f D x + if f W log x 0
286 283 285 subnegd φ f D x + n = 1 x f L n Λ n n if f W log x 0 = n = 1 x f L n Λ n n + if f W log x 0
287 282 286 eqtrd φ f D x + n = 1 x f L n Λ n n log x if f W 1 0 = n = 1 x f L n Λ n n + if f W log x 0
288 268 287 sylan9eqr φ f D x + f 1 ˙ n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 = n = 1 x f L n Λ n n + if f W log x 0
289 288 an32s φ f D f 1 ˙ x + n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 = n = 1 x f L n Λ n n + if f W log x 0
290 289 mpteq2dva φ f D f 1 ˙ x + n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 = x + n = 1 x f L n Λ n n + if f W log x 0
291 3 ad2antrr φ f D f 1 ˙ N
292 simplr φ f D f 1 ˙ f D
293 simpr φ f D f 1 ˙ f 1 ˙
294 eqid a f L a a = a f L a a
295 1 2 291 4 5 6 292 293 294 dchrmusumlema φ f D f 1 ˙ t c 0 +∞ seq 1 + a f L a a t y 1 +∞ seq 1 + a f L a a y t c y
296 3 adantr φ f D N
297 296 ad2antrr φ f D f 1 ˙ c 0 +∞ seq 1 + a f L a a t y 1 +∞ seq 1 + a f L a a y t c y N
298 292 adantr φ f D f 1 ˙ c 0 +∞ seq 1 + a f L a a t y 1 +∞ seq 1 + a f L a a y t c y f D
299 simplr φ f D f 1 ˙ c 0 +∞ seq 1 + a f L a a t y 1 +∞ seq 1 + a f L a a y t c y f 1 ˙
300 simprl φ f D f 1 ˙ c 0 +∞ seq 1 + a f L a a t y 1 +∞ seq 1 + a f L a a y t c y c 0 +∞
301 simprrl φ f D f 1 ˙ c 0 +∞ seq 1 + a f L a a t y 1 +∞ seq 1 + a f L a a y t c y seq 1 + a f L a a t
302 simprrr φ f D f 1 ˙ c 0 +∞ seq 1 + a f L a a t y 1 +∞ seq 1 + a f L a a y t c y y 1 +∞ seq 1 + a f L a a y t c y
303 1 2 297 4 5 6 298 299 294 300 301 302 7 dchrvmaeq0 φ f D f 1 ˙ c 0 +∞ seq 1 + a f L a a t y 1 +∞ seq 1 + a f L a a y t c y f W t = 0
304 ifbi f W t = 0 if f W log x 0 = if t = 0 log x 0
305 304 oveq2d f W t = 0 n = 1 x f L n Λ n n + if f W log x 0 = n = 1 x f L n Λ n n + if t = 0 log x 0
306 305 mpteq2dv f W t = 0 x + n = 1 x f L n Λ n n + if f W log x 0 = x + n = 1 x f L n Λ n n + if t = 0 log x 0
307 303 306 syl φ f D f 1 ˙ c 0 +∞ seq 1 + a f L a a t y 1 +∞ seq 1 + a f L a a y t c y x + n = 1 x f L n Λ n n + if f W log x 0 = x + n = 1 x f L n Λ n n + if t = 0 log x 0
308 1 2 297 4 5 6 298 299 294 300 301 302 dchrvmasumif φ f D f 1 ˙ c 0 +∞ seq 1 + a f L a a t y 1 +∞ seq 1 + a f L a a y t c y x + n = 1 x f L n Λ n n + if t = 0 log x 0 𝑂1
309 307 308 eqeltrd φ f D f 1 ˙ c 0 +∞ seq 1 + a f L a a t y 1 +∞ seq 1 + a f L a a y t c y x + n = 1 x f L n Λ n n + if f W log x 0 𝑂1
310 309 rexlimdvaa φ f D f 1 ˙ c 0 +∞ seq 1 + a f L a a t y 1 +∞ seq 1 + a f L a a y t c y x + n = 1 x f L n Λ n n + if f W log x 0 𝑂1
311 310 exlimdv φ f D f 1 ˙ t c 0 +∞ seq 1 + a f L a a t y 1 +∞ seq 1 + a f L a a y t c y x + n = 1 x f L n Λ n n + if f W log x 0 𝑂1
312 295 311 mpd φ f D f 1 ˙ x + n = 1 x f L n Λ n n + if f W log x 0 𝑂1
313 290 312 eqeltrd φ f D f 1 ˙ x + n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 𝑂1
314 266 313 pm2.61dane φ f D x + n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 𝑂1
315 250 251 253 314 o1mul2 φ f D x + f A n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 𝑂1
316 243 244 249 315 fsumo1 φ x + f D f A n = 1 x f L n Λ n n log x if f = 1 ˙ 1 if f W 1 0 𝑂1
317 241 316 eqeltrrd φ x + ϕ N n 1 x T Λ n n log x 1 W 𝑂1