Metamath Proof Explorer


Theorem sum2dchr

Description: An orthogonality relation for Dirichlet characters: the sum of x ( A ) for fixed A and all x is 0 if A = 1 and phi ( n ) otherwise. Part of Theorem 6.5.2 of Shapiro p. 232. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses sum2dchr.g G=DChrN
sum2dchr.d D=BaseG
sum2dchr.z Z=/N
sum2dchr.b B=BaseZ
sum2dchr.u U=UnitZ
sum2dchr.n φN
sum2dchr.a φAB
sum2dchr.c φCU
Assertion sum2dchr φxDxAxC=ifA=CϕN0

Proof

Step Hyp Ref Expression
1 sum2dchr.g G=DChrN
2 sum2dchr.d D=BaseG
3 sum2dchr.z Z=/N
4 sum2dchr.b B=BaseZ
5 sum2dchr.u U=UnitZ
6 sum2dchr.n φN
7 sum2dchr.a φAB
8 sum2dchr.c φCU
9 eqid 1Z=1Z
10 6 nnnn0d φN0
11 3 zncrng N0ZCRing
12 crngring ZCRingZRing
13 10 11 12 3syl φZRing
14 eqid /rZ=/rZ
15 4 5 14 dvrcl ZRingABCUA/rZCB
16 13 7 8 15 syl3anc φA/rZCB
17 1 2 3 9 4 6 16 sumdchr φxDxA/rZC=ifA/rZC=1ZϕN0
18 eqid Z=Z
19 eqid invrZ=invrZ
20 4 18 5 19 14 dvrval ABCUA/rZC=AZinvrZC
21 7 8 20 syl2anc φA/rZC=AZinvrZC
22 21 adantr φxDA/rZC=AZinvrZC
23 22 fveq2d φxDxA/rZC=xAZinvrZC
24 1 3 2 dchrmhm DmulGrpZMndHommulGrpfld
25 simpr φxDxD
26 24 25 sselid φxDxmulGrpZMndHommulGrpfld
27 7 adantr φxDAB
28 4 5 unitss UB
29 5 19 unitinvcl ZRingCUinvrZCU
30 13 8 29 syl2anc φinvrZCU
31 30 adantr φxDinvrZCU
32 28 31 sselid φxDinvrZCB
33 eqid mulGrpZ=mulGrpZ
34 33 4 mgpbas B=BasemulGrpZ
35 33 18 mgpplusg Z=+mulGrpZ
36 eqid mulGrpfld=mulGrpfld
37 cnfldmul ×=fld
38 36 37 mgpplusg ×=+mulGrpfld
39 34 35 38 mhmlin xmulGrpZMndHommulGrpfldABinvrZCBxAZinvrZC=xAxinvrZC
40 26 27 32 39 syl3anc φxDxAZinvrZC=xAxinvrZC
41 eqid mulGrpZ𝑠U=mulGrpZ𝑠U
42 eqid mulGrpfld𝑠0=mulGrpfld𝑠0
43 1 3 2 5 41 42 25 dchrghm φxDxUmulGrpZ𝑠UGrpHommulGrpfld𝑠0
44 8 adantr φxDCU
45 5 41 unitgrpbas U=BasemulGrpZ𝑠U
46 5 41 19 invrfval invrZ=invgmulGrpZ𝑠U
47 cnfldbas =Basefld
48 cnfld0 0=0fld
49 cndrng fldDivRing
50 47 48 49 drngui 0=Unitfld
51 eqid invrfld=invrfld
52 50 42 51 invrfval invrfld=invgmulGrpfld𝑠0
53 45 46 52 ghminv xUmulGrpZ𝑠UGrpHommulGrpfld𝑠0CUxUinvrZC=invrfldxUC
54 43 44 53 syl2anc φxDxUinvrZC=invrfldxUC
55 31 fvresd φxDxUinvrZC=xinvrZC
56 44 fvresd φxDxUC=xC
57 56 fveq2d φxDinvrfldxUC=invrfldxC
58 1 3 2 4 25 dchrf φxDx:B
59 28 44 sselid φxDCB
60 58 59 ffvelcdmd φxDxC
61 1 3 2 4 5 25 59 dchrn0 φxDxC0CU
62 44 61 mpbird φxDxC0
63 cnfldinv xCxC0invrfldxC=1xC
64 60 62 63 syl2anc φxDinvrfldxC=1xC
65 recval xCxC01xC=xCxC2
66 60 62 65 syl2anc φxD1xC=xCxC2
67 1 2 25 3 5 44 dchrabs φxDxC=1
68 67 oveq1d φxDxC2=12
69 sq1 12=1
70 68 69 eqtrdi φxDxC2=1
71 70 oveq2d φxDxCxC2=xC1
72 60 cjcld φxDxC
73 72 div1d φxDxC1=xC
74 66 71 73 3eqtrd φxD1xC=xC
75 57 64 74 3eqtrd φxDinvrfldxUC=xC
76 54 55 75 3eqtr3d φxDxinvrZC=xC
77 76 oveq2d φxDxAxinvrZC=xAxC
78 23 40 77 3eqtrd φxDxA/rZC=xAxC
79 78 sumeq2dv φxDxA/rZC=xDxAxC
80 4 5 14 9 dvreq1 ZRingABCUA/rZC=1ZA=C
81 13 7 8 80 syl3anc φA/rZC=1ZA=C
82 81 ifbid φifA/rZC=1ZϕN0=ifA=CϕN0
83 17 79 82 3eqtr3d φxDxAxC=ifA=CϕN0