Metamath Proof Explorer


Theorem sum2dchr

Description: An orthogonality relation for Dirichlet characters: the sum of x ( A ) for fixed A and all x is 0 if A = 1 and phi ( n ) otherwise. Part of Theorem 6.5.2 of Shapiro p. 232. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses sum2dchr.g G = DChr N
sum2dchr.d D = Base G
sum2dchr.z Z = /N
sum2dchr.b B = Base Z
sum2dchr.u U = Unit Z
sum2dchr.n φ N
sum2dchr.a φ A B
sum2dchr.c φ C U
Assertion sum2dchr φ x D x A x C = if A = C ϕ N 0

Proof

Step Hyp Ref Expression
1 sum2dchr.g G = DChr N
2 sum2dchr.d D = Base G
3 sum2dchr.z Z = /N
4 sum2dchr.b B = Base Z
5 sum2dchr.u U = Unit Z
6 sum2dchr.n φ N
7 sum2dchr.a φ A B
8 sum2dchr.c φ C U
9 eqid 1 Z = 1 Z
10 6 nnnn0d φ N 0
11 3 zncrng N 0 Z CRing
12 crngring Z CRing Z Ring
13 10 11 12 3syl φ Z Ring
14 eqid / r Z = / r Z
15 4 5 14 dvrcl Z Ring A B C U A / r Z C B
16 13 7 8 15 syl3anc φ A / r Z C B
17 1 2 3 9 4 6 16 sumdchr φ x D x A / r Z C = if A / r Z C = 1 Z ϕ N 0
18 eqid Z = Z
19 eqid inv r Z = inv r Z
20 4 18 5 19 14 dvrval A B C U A / r Z C = A Z inv r Z C
21 7 8 20 syl2anc φ A / r Z C = A Z inv r Z C
22 21 adantr φ x D A / r Z C = A Z inv r Z C
23 22 fveq2d φ x D x A / r Z C = x A Z inv r Z C
24 1 3 2 dchrmhm D mulGrp Z MndHom mulGrp fld
25 simpr φ x D x D
26 24 25 sseldi φ x D x mulGrp Z MndHom mulGrp fld
27 7 adantr φ x D A B
28 4 5 unitss U B
29 5 19 unitinvcl Z Ring C U inv r Z C U
30 13 8 29 syl2anc φ inv r Z C U
31 30 adantr φ x D inv r Z C U
32 28 31 sseldi φ x D inv r Z C B
33 eqid mulGrp Z = mulGrp Z
34 33 4 mgpbas B = Base mulGrp Z
35 33 18 mgpplusg Z = + mulGrp Z
36 eqid mulGrp fld = mulGrp fld
37 cnfldmul × = fld
38 36 37 mgpplusg × = + mulGrp fld
39 34 35 38 mhmlin x mulGrp Z MndHom mulGrp fld A B inv r Z C B x A Z inv r Z C = x A x inv r Z C
40 26 27 32 39 syl3anc φ x D x A Z inv r Z C = x A x inv r Z C
41 eqid mulGrp Z 𝑠 U = mulGrp Z 𝑠 U
42 eqid mulGrp fld 𝑠 0 = mulGrp fld 𝑠 0
43 1 3 2 5 41 42 25 dchrghm φ x D x U mulGrp Z 𝑠 U GrpHom mulGrp fld 𝑠 0
44 8 adantr φ x D C U
45 5 41 unitgrpbas U = Base mulGrp Z 𝑠 U
46 5 41 19 invrfval inv r Z = inv g mulGrp Z 𝑠 U
47 cnfldbas = Base fld
48 cnfld0 0 = 0 fld
49 cndrng fld DivRing
50 47 48 49 drngui 0 = Unit fld
51 eqid inv r fld = inv r fld
52 50 42 51 invrfval inv r fld = inv g mulGrp fld 𝑠 0
53 45 46 52 ghminv x U mulGrp Z 𝑠 U GrpHom mulGrp fld 𝑠 0 C U x U inv r Z C = inv r fld x U C
54 43 44 53 syl2anc φ x D x U inv r Z C = inv r fld x U C
55 31 fvresd φ x D x U inv r Z C = x inv r Z C
56 44 fvresd φ x D x U C = x C
57 56 fveq2d φ x D inv r fld x U C = inv r fld x C
58 1 3 2 4 25 dchrf φ x D x : B
59 28 44 sseldi φ x D C B
60 58 59 ffvelrnd φ x D x C
61 1 3 2 4 5 25 59 dchrn0 φ x D x C 0 C U
62 44 61 mpbird φ x D x C 0
63 cnfldinv x C x C 0 inv r fld x C = 1 x C
64 60 62 63 syl2anc φ x D inv r fld x C = 1 x C
65 recval x C x C 0 1 x C = x C x C 2
66 60 62 65 syl2anc φ x D 1 x C = x C x C 2
67 1 2 25 3 5 44 dchrabs φ x D x C = 1
68 67 oveq1d φ x D x C 2 = 1 2
69 sq1 1 2 = 1
70 68 69 eqtrdi φ x D x C 2 = 1
71 70 oveq2d φ x D x C x C 2 = x C 1
72 60 cjcld φ x D x C
73 72 div1d φ x D x C 1 = x C
74 66 71 73 3eqtrd φ x D 1 x C = x C
75 57 64 74 3eqtrd φ x D inv r fld x U C = x C
76 54 55 75 3eqtr3d φ x D x inv r Z C = x C
77 76 oveq2d φ x D x A x inv r Z C = x A x C
78 23 40 77 3eqtrd φ x D x A / r Z C = x A x C
79 78 sumeq2dv φ x D x A / r Z C = x D x A x C
80 4 5 14 9 dvreq1 Z Ring A B C U A / r Z C = 1 Z A = C
81 13 7 8 80 syl3anc φ A / r Z C = 1 Z A = C
82 81 ifbid φ if A / r Z C = 1 Z ϕ N 0 = if A = C ϕ N 0
83 17 79 82 3eqtr3d φ x D x A x C = if A = C ϕ N 0