| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
| 2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
| 3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
| 4 |
|
rpvmasum2.g |
|- G = ( DChr ` N ) |
| 5 |
|
rpvmasum2.d |
|- D = ( Base ` G ) |
| 6 |
|
rpvmasum2.1 |
|- .1. = ( 0g ` G ) |
| 7 |
|
rpvmasum2.w |
|- W = { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } |
| 8 |
|
rpvmasum2.u |
|- U = ( Unit ` Z ) |
| 9 |
|
rpvmasum2.b |
|- ( ph -> A e. U ) |
| 10 |
|
rpvmasum2.t |
|- T = ( `' L " { A } ) |
| 11 |
|
rpvmasum2.z1 |
|- ( ( ph /\ f e. W ) -> A = ( 1r ` Z ) ) |
| 12 |
3
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> N e. NN ) |
| 13 |
4 5
|
dchrfi |
|- ( N e. NN -> D e. Fin ) |
| 14 |
12 13
|
syl |
|- ( ( ph /\ x e. RR+ ) -> D e. Fin ) |
| 15 |
|
fzfid |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 16 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
| 17 |
|
simpr |
|- ( ( ph /\ f e. D ) -> f e. D ) |
| 18 |
4 1 5 16 17
|
dchrf |
|- ( ( ph /\ f e. D ) -> f : ( Base ` Z ) --> CC ) |
| 19 |
16 8
|
unitss |
|- U C_ ( Base ` Z ) |
| 20 |
19 9
|
sselid |
|- ( ph -> A e. ( Base ` Z ) ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ f e. D ) -> A e. ( Base ` Z ) ) |
| 22 |
18 21
|
ffvelcdmd |
|- ( ( ph /\ f e. D ) -> ( f ` A ) e. CC ) |
| 23 |
22
|
cjcld |
|- ( ( ph /\ f e. D ) -> ( * ` ( f ` A ) ) e. CC ) |
| 24 |
23
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( * ` ( f ` A ) ) e. CC ) |
| 25 |
24
|
adantrl |
|- ( ( ( ph /\ x e. RR+ ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ f e. D ) ) -> ( * ` ( f ` A ) ) e. CC ) |
| 26 |
18
|
ad4ant14 |
|- ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ f e. D ) -> f : ( Base ` Z ) --> CC ) |
| 27 |
3
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 28 |
1 16 2
|
znzrhfo |
|- ( N e. NN0 -> L : ZZ -onto-> ( Base ` Z ) ) |
| 29 |
|
fof |
|- ( L : ZZ -onto-> ( Base ` Z ) -> L : ZZ --> ( Base ` Z ) ) |
| 30 |
27 28 29
|
3syl |
|- ( ph -> L : ZZ --> ( Base ` Z ) ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> L : ZZ --> ( Base ` Z ) ) |
| 32 |
|
elfzelz |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. ZZ ) |
| 33 |
|
ffvelcdm |
|- ( ( L : ZZ --> ( Base ` Z ) /\ n e. ZZ ) -> ( L ` n ) e. ( Base ` Z ) ) |
| 34 |
31 32 33
|
syl2an |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( L ` n ) e. ( Base ` Z ) ) |
| 35 |
34
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ f e. D ) -> ( L ` n ) e. ( Base ` Z ) ) |
| 36 |
26 35
|
ffvelcdmd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ f e. D ) -> ( f ` ( L ` n ) ) e. CC ) |
| 37 |
36
|
anasss |
|- ( ( ( ph /\ x e. RR+ ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ f e. D ) ) -> ( f ` ( L ` n ) ) e. CC ) |
| 38 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
| 39 |
38
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 40 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
| 41 |
39 40
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
| 42 |
41 39
|
nndivred |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
| 43 |
42
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) |
| 44 |
43
|
adantrr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ f e. D ) ) -> ( ( Lam ` n ) / n ) e. CC ) |
| 45 |
37 44
|
mulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ f e. D ) ) -> ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
| 46 |
25 45
|
mulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ f e. D ) ) -> ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) e. CC ) |
| 47 |
46
|
anass1rs |
|- ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) e. CC ) |
| 48 |
15 47
|
fsumcl |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) e. CC ) |
| 49 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
| 50 |
49
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
| 51 |
50
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
| 52 |
51
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( log ` x ) e. CC ) |
| 53 |
|
ax-1cn |
|- 1 e. CC |
| 54 |
|
neg1cn |
|- -u 1 e. CC |
| 55 |
|
0cn |
|- 0 e. CC |
| 56 |
54 55
|
ifcli |
|- if ( f e. W , -u 1 , 0 ) e. CC |
| 57 |
53 56
|
ifcli |
|- if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) e. CC |
| 58 |
|
mulcl |
|- ( ( ( log ` x ) e. CC /\ if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) e. CC ) -> ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) e. CC ) |
| 59 |
52 57 58
|
sylancl |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) e. CC ) |
| 60 |
14 48 59
|
fsumsub |
|- ( ( ph /\ x e. RR+ ) -> sum_ f e. D ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) = ( sum_ f e. D sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) - sum_ f e. D ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) |
| 61 |
45
|
anass1rs |
|- ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
| 62 |
15 61
|
fsumcl |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
| 63 |
24 62 59
|
subdid |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( ( * ` ( f ` A ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) = ( ( ( * ` ( f ` A ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) - ( ( * ` ( f ` A ) ) x. ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) ) |
| 64 |
15 24 61
|
fsummulc2 |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( ( * ` ( f ` A ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 65 |
57
|
a1i |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) e. CC ) |
| 66 |
24 52 65
|
mul12d |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( ( * ` ( f ` A ) ) x. ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) = ( ( log ` x ) x. ( ( * ` ( f ` A ) ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) |
| 67 |
|
ovif2 |
|- ( ( * ` ( f ` A ) ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) = if ( f = .1. , ( ( * ` ( f ` A ) ) x. 1 ) , ( ( * ` ( f ` A ) ) x. if ( f e. W , -u 1 , 0 ) ) ) |
| 68 |
|
fveq1 |
|- ( f = .1. -> ( f ` A ) = ( .1. ` A ) ) |
| 69 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> N e. NN ) |
| 70 |
9
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> A e. U ) |
| 71 |
4 1 6 8 69 70
|
dchr1 |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( .1. ` A ) = 1 ) |
| 72 |
68 71
|
sylan9eqr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f = .1. ) -> ( f ` A ) = 1 ) |
| 73 |
72
|
fveq2d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f = .1. ) -> ( * ` ( f ` A ) ) = ( * ` 1 ) ) |
| 74 |
|
1re |
|- 1 e. RR |
| 75 |
|
cjre |
|- ( 1 e. RR -> ( * ` 1 ) = 1 ) |
| 76 |
74 75
|
ax-mp |
|- ( * ` 1 ) = 1 |
| 77 |
73 76
|
eqtrdi |
|- ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f = .1. ) -> ( * ` ( f ` A ) ) = 1 ) |
| 78 |
77
|
oveq1d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f = .1. ) -> ( ( * ` ( f ` A ) ) x. 1 ) = ( 1 x. 1 ) ) |
| 79 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 80 |
78 79
|
eqtrdi |
|- ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f = .1. ) -> ( ( * ` ( f ` A ) ) x. 1 ) = 1 ) |
| 81 |
|
df-ne |
|- ( f =/= .1. <-> -. f = .1. ) |
| 82 |
|
ovif2 |
|- ( ( * ` ( f ` A ) ) x. if ( f e. W , -u 1 , 0 ) ) = if ( f e. W , ( ( * ` ( f ` A ) ) x. -u 1 ) , ( ( * ` ( f ` A ) ) x. 0 ) ) |
| 83 |
11
|
fveq2d |
|- ( ( ph /\ f e. W ) -> ( f ` A ) = ( f ` ( 1r ` Z ) ) ) |
| 84 |
83
|
ad5ant15 |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f =/= .1. ) /\ f e. W ) -> ( f ` A ) = ( f ` ( 1r ` Z ) ) ) |
| 85 |
4 1 5
|
dchrmhm |
|- D C_ ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) |
| 86 |
|
simpr |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> f e. D ) |
| 87 |
85 86
|
sselid |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> f e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) ) |
| 88 |
|
eqid |
|- ( mulGrp ` Z ) = ( mulGrp ` Z ) |
| 89 |
|
eqid |
|- ( 1r ` Z ) = ( 1r ` Z ) |
| 90 |
88 89
|
ringidval |
|- ( 1r ` Z ) = ( 0g ` ( mulGrp ` Z ) ) |
| 91 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 92 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
| 93 |
91 92
|
ringidval |
|- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
| 94 |
90 93
|
mhm0 |
|- ( f e. ( ( mulGrp ` Z ) MndHom ( mulGrp ` CCfld ) ) -> ( f ` ( 1r ` Z ) ) = 1 ) |
| 95 |
87 94
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( f ` ( 1r ` Z ) ) = 1 ) |
| 96 |
95
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f =/= .1. ) /\ f e. W ) -> ( f ` ( 1r ` Z ) ) = 1 ) |
| 97 |
84 96
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f =/= .1. ) /\ f e. W ) -> ( f ` A ) = 1 ) |
| 98 |
97
|
fveq2d |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f =/= .1. ) /\ f e. W ) -> ( * ` ( f ` A ) ) = ( * ` 1 ) ) |
| 99 |
98 76
|
eqtrdi |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f =/= .1. ) /\ f e. W ) -> ( * ` ( f ` A ) ) = 1 ) |
| 100 |
99
|
oveq1d |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f =/= .1. ) /\ f e. W ) -> ( ( * ` ( f ` A ) ) x. -u 1 ) = ( 1 x. -u 1 ) ) |
| 101 |
54
|
mullidi |
|- ( 1 x. -u 1 ) = -u 1 |
| 102 |
100 101
|
eqtrdi |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f =/= .1. ) /\ f e. W ) -> ( ( * ` ( f ` A ) ) x. -u 1 ) = -u 1 ) |
| 103 |
102
|
ifeq1da |
|- ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f =/= .1. ) -> if ( f e. W , ( ( * ` ( f ` A ) ) x. -u 1 ) , ( ( * ` ( f ` A ) ) x. 0 ) ) = if ( f e. W , -u 1 , ( ( * ` ( f ` A ) ) x. 0 ) ) ) |
| 104 |
24
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f =/= .1. ) -> ( * ` ( f ` A ) ) e. CC ) |
| 105 |
104
|
mul01d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f =/= .1. ) -> ( ( * ` ( f ` A ) ) x. 0 ) = 0 ) |
| 106 |
105
|
ifeq2d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f =/= .1. ) -> if ( f e. W , -u 1 , ( ( * ` ( f ` A ) ) x. 0 ) ) = if ( f e. W , -u 1 , 0 ) ) |
| 107 |
103 106
|
eqtrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f =/= .1. ) -> if ( f e. W , ( ( * ` ( f ` A ) ) x. -u 1 ) , ( ( * ` ( f ` A ) ) x. 0 ) ) = if ( f e. W , -u 1 , 0 ) ) |
| 108 |
82 107
|
eqtrid |
|- ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ f =/= .1. ) -> ( ( * ` ( f ` A ) ) x. if ( f e. W , -u 1 , 0 ) ) = if ( f e. W , -u 1 , 0 ) ) |
| 109 |
81 108
|
sylan2br |
|- ( ( ( ( ph /\ x e. RR+ ) /\ f e. D ) /\ -. f = .1. ) -> ( ( * ` ( f ` A ) ) x. if ( f e. W , -u 1 , 0 ) ) = if ( f e. W , -u 1 , 0 ) ) |
| 110 |
80 109
|
ifeq12da |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> if ( f = .1. , ( ( * ` ( f ` A ) ) x. 1 ) , ( ( * ` ( f ` A ) ) x. if ( f e. W , -u 1 , 0 ) ) ) = if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) |
| 111 |
67 110
|
eqtrid |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( ( * ` ( f ` A ) ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) = if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) |
| 112 |
111
|
oveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( ( log ` x ) x. ( ( * ` ( f ` A ) ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) = ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) |
| 113 |
66 112
|
eqtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( ( * ` ( f ` A ) ) x. ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) = ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) |
| 114 |
64 113
|
oveq12d |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( ( ( * ` ( f ` A ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) - ( ( * ` ( f ` A ) ) x. ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) |
| 115 |
63 114
|
eqtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( ( * ` ( f ` A ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) |
| 116 |
115
|
sumeq2dv |
|- ( ( ph /\ x e. RR+ ) -> sum_ f e. D ( ( * ` ( f ` A ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) = sum_ f e. D ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) |
| 117 |
|
fzfid |
|- ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 118 |
|
inss1 |
|- ( ( 1 ... ( |_ ` x ) ) i^i T ) C_ ( 1 ... ( |_ ` x ) ) |
| 119 |
|
ssfi |
|- ( ( ( 1 ... ( |_ ` x ) ) e. Fin /\ ( ( 1 ... ( |_ ` x ) ) i^i T ) C_ ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 ... ( |_ ` x ) ) i^i T ) e. Fin ) |
| 120 |
117 118 119
|
sylancl |
|- ( ( ph /\ x e. RR+ ) -> ( ( 1 ... ( |_ ` x ) ) i^i T ) e. Fin ) |
| 121 |
12
|
phicld |
|- ( ( ph /\ x e. RR+ ) -> ( phi ` N ) e. NN ) |
| 122 |
121
|
nncnd |
|- ( ( ph /\ x e. RR+ ) -> ( phi ` N ) e. CC ) |
| 123 |
118
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> ( ( 1 ... ( |_ ` x ) ) i^i T ) C_ ( 1 ... ( |_ ` x ) ) ) |
| 124 |
123
|
sselda |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) -> n e. ( 1 ... ( |_ ` x ) ) ) |
| 125 |
124 43
|
syldan |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) -> ( ( Lam ` n ) / n ) e. CC ) |
| 126 |
120 122 125
|
fsummulc2 |
|- ( ( ph /\ x e. RR+ ) -> ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` n ) / n ) ) = sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) ) |
| 127 |
122
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( phi ` N ) e. CC ) |
| 128 |
127 43
|
mulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
| 129 |
124 128
|
syldan |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) -> ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
| 130 |
129
|
ralrimiva |
|- ( ( ph /\ x e. RR+ ) -> A. n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
| 131 |
117
|
olcd |
|- ( ( ph /\ x e. RR+ ) -> ( ( 1 ... ( |_ ` x ) ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... ( |_ ` x ) ) e. Fin ) ) |
| 132 |
|
sumss2 |
|- ( ( ( ( ( 1 ... ( |_ ` x ) ) i^i T ) C_ ( 1 ... ( |_ ` x ) ) /\ A. n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) e. CC ) /\ ( ( 1 ... ( |_ ` x ) ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... ( |_ ` x ) ) e. Fin ) ) -> sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) if ( n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) , ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) , 0 ) ) |
| 133 |
123 130 131 132
|
syl21anc |
|- ( ( ph /\ x e. RR+ ) -> sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) if ( n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) , ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) , 0 ) ) |
| 134 |
|
elin |
|- ( n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) <-> ( n e. ( 1 ... ( |_ ` x ) ) /\ n e. T ) ) |
| 135 |
134
|
baib |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> ( n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) <-> n e. T ) ) |
| 136 |
135
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) <-> n e. T ) ) |
| 137 |
10
|
eleq2i |
|- ( n e. T <-> n e. ( `' L " { A } ) ) |
| 138 |
31
|
ffnd |
|- ( ( ph /\ x e. RR+ ) -> L Fn ZZ ) |
| 139 |
|
fniniseg |
|- ( L Fn ZZ -> ( n e. ( `' L " { A } ) <-> ( n e. ZZ /\ ( L ` n ) = A ) ) ) |
| 140 |
139
|
baibd |
|- ( ( L Fn ZZ /\ n e. ZZ ) -> ( n e. ( `' L " { A } ) <-> ( L ` n ) = A ) ) |
| 141 |
138 32 140
|
syl2an |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. ( `' L " { A } ) <-> ( L ` n ) = A ) ) |
| 142 |
137 141
|
bitrid |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. T <-> ( L ` n ) = A ) ) |
| 143 |
136 142
|
bitr2d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( L ` n ) = A <-> n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) ) |
| 144 |
43
|
mul02d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 0 x. ( ( Lam ` n ) / n ) ) = 0 ) |
| 145 |
143 144
|
ifbieq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> if ( ( L ` n ) = A , ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) , ( 0 x. ( ( Lam ` n ) / n ) ) ) = if ( n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) , ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) , 0 ) ) |
| 146 |
|
ovif |
|- ( if ( ( L ` n ) = A , ( phi ` N ) , 0 ) x. ( ( Lam ` n ) / n ) ) = if ( ( L ` n ) = A , ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) , ( 0 x. ( ( Lam ` n ) / n ) ) ) |
| 147 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> N e. NN ) |
| 148 |
147 13
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> D e. Fin ) |
| 149 |
23
|
ad4ant14 |
|- ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ f e. D ) -> ( * ` ( f ` A ) ) e. CC ) |
| 150 |
36 149
|
mulcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ f e. D ) -> ( ( f ` ( L ` n ) ) x. ( * ` ( f ` A ) ) ) e. CC ) |
| 151 |
148 43 150
|
fsummulc1 |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ f e. D ( ( f ` ( L ` n ) ) x. ( * ` ( f ` A ) ) ) x. ( ( Lam ` n ) / n ) ) = sum_ f e. D ( ( ( f ` ( L ` n ) ) x. ( * ` ( f ` A ) ) ) x. ( ( Lam ` n ) / n ) ) ) |
| 152 |
9
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A e. U ) |
| 153 |
4 5 1 16 8 147 34 152
|
sum2dchr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ f e. D ( ( f ` ( L ` n ) ) x. ( * ` ( f ` A ) ) ) = if ( ( L ` n ) = A , ( phi ` N ) , 0 ) ) |
| 154 |
153
|
oveq1d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ f e. D ( ( f ` ( L ` n ) ) x. ( * ` ( f ` A ) ) ) x. ( ( Lam ` n ) / n ) ) = ( if ( ( L ` n ) = A , ( phi ` N ) , 0 ) x. ( ( Lam ` n ) / n ) ) ) |
| 155 |
43
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ f e. D ) -> ( ( Lam ` n ) / n ) e. CC ) |
| 156 |
|
mulass |
|- ( ( ( f ` ( L ` n ) ) e. CC /\ ( * ` ( f ` A ) ) e. CC /\ ( ( Lam ` n ) / n ) e. CC ) -> ( ( ( f ` ( L ` n ) ) x. ( * ` ( f ` A ) ) ) x. ( ( Lam ` n ) / n ) ) = ( ( f ` ( L ` n ) ) x. ( ( * ` ( f ` A ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 157 |
|
mul12 |
|- ( ( ( f ` ( L ` n ) ) e. CC /\ ( * ` ( f ` A ) ) e. CC /\ ( ( Lam ` n ) / n ) e. CC ) -> ( ( f ` ( L ` n ) ) x. ( ( * ` ( f ` A ) ) x. ( ( Lam ` n ) / n ) ) ) = ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 158 |
156 157
|
eqtrd |
|- ( ( ( f ` ( L ` n ) ) e. CC /\ ( * ` ( f ` A ) ) e. CC /\ ( ( Lam ` n ) / n ) e. CC ) -> ( ( ( f ` ( L ` n ) ) x. ( * ` ( f ` A ) ) ) x. ( ( Lam ` n ) / n ) ) = ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 159 |
36 149 155 158
|
syl3anc |
|- ( ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ f e. D ) -> ( ( ( f ` ( L ` n ) ) x. ( * ` ( f ` A ) ) ) x. ( ( Lam ` n ) / n ) ) = ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 160 |
159
|
sumeq2dv |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ f e. D ( ( ( f ` ( L ` n ) ) x. ( * ` ( f ` A ) ) ) x. ( ( Lam ` n ) / n ) ) = sum_ f e. D ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 161 |
151 154 160
|
3eqtr3d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( if ( ( L ` n ) = A , ( phi ` N ) , 0 ) x. ( ( Lam ` n ) / n ) ) = sum_ f e. D ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 162 |
146 161
|
eqtr3id |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> if ( ( L ` n ) = A , ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) , ( 0 x. ( ( Lam ` n ) / n ) ) ) = sum_ f e. D ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 163 |
145 162
|
eqtr3d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> if ( n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) , ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) , 0 ) = sum_ f e. D ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 164 |
163
|
sumeq2dv |
|- ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) if ( n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) , ( ( phi ` N ) x. ( ( Lam ` n ) / n ) ) , 0 ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ f e. D ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 165 |
126 133 164
|
3eqtrd |
|- ( ( ph /\ x e. RR+ ) -> ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` n ) / n ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ f e. D ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 166 |
117 14 46
|
fsumcom |
|- ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ f e. D ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) = sum_ f e. D sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 167 |
165 166
|
eqtrd |
|- ( ( ph /\ x e. RR+ ) -> ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` n ) / n ) ) = sum_ f e. D sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 168 |
4
|
dchrabl |
|- ( N e. NN -> G e. Abel ) |
| 169 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 170 |
5 6
|
grpidcl |
|- ( G e. Grp -> .1. e. D ) |
| 171 |
12 168 169 170
|
4syl |
|- ( ( ph /\ x e. RR+ ) -> .1. e. D ) |
| 172 |
51
|
mulridd |
|- ( ( ph /\ x e. RR+ ) -> ( ( log ` x ) x. 1 ) = ( log ` x ) ) |
| 173 |
172 51
|
eqeltrd |
|- ( ( ph /\ x e. RR+ ) -> ( ( log ` x ) x. 1 ) e. CC ) |
| 174 |
|
iftrue |
|- ( f = .1. -> if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) = 1 ) |
| 175 |
174
|
oveq2d |
|- ( f = .1. -> ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) = ( ( log ` x ) x. 1 ) ) |
| 176 |
175
|
sumsn |
|- ( ( .1. e. D /\ ( ( log ` x ) x. 1 ) e. CC ) -> sum_ f e. { .1. } ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) = ( ( log ` x ) x. 1 ) ) |
| 177 |
171 173 176
|
syl2anc |
|- ( ( ph /\ x e. RR+ ) -> sum_ f e. { .1. } ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) = ( ( log ` x ) x. 1 ) ) |
| 178 |
|
eldifsn |
|- ( f e. ( D \ { .1. } ) <-> ( f e. D /\ f =/= .1. ) ) |
| 179 |
|
ifnefalse |
|- ( f =/= .1. -> if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) = if ( f e. W , -u 1 , 0 ) ) |
| 180 |
179
|
ad2antll |
|- ( ( ( ph /\ x e. RR+ ) /\ ( f e. D /\ f =/= .1. ) ) -> if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) = if ( f e. W , -u 1 , 0 ) ) |
| 181 |
|
negeq |
|- ( if ( f e. W , 1 , 0 ) = 1 -> -u if ( f e. W , 1 , 0 ) = -u 1 ) |
| 182 |
|
negeq |
|- ( if ( f e. W , 1 , 0 ) = 0 -> -u if ( f e. W , 1 , 0 ) = -u 0 ) |
| 183 |
|
neg0 |
|- -u 0 = 0 |
| 184 |
182 183
|
eqtrdi |
|- ( if ( f e. W , 1 , 0 ) = 0 -> -u if ( f e. W , 1 , 0 ) = 0 ) |
| 185 |
181 184
|
ifsb |
|- -u if ( f e. W , 1 , 0 ) = if ( f e. W , -u 1 , 0 ) |
| 186 |
180 185
|
eqtr4di |
|- ( ( ( ph /\ x e. RR+ ) /\ ( f e. D /\ f =/= .1. ) ) -> if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) = -u if ( f e. W , 1 , 0 ) ) |
| 187 |
186
|
oveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( f e. D /\ f =/= .1. ) ) -> ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) = ( ( log ` x ) x. -u if ( f e. W , 1 , 0 ) ) ) |
| 188 |
51
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( f e. D /\ f =/= .1. ) ) -> ( log ` x ) e. CC ) |
| 189 |
53 55
|
ifcli |
|- if ( f e. W , 1 , 0 ) e. CC |
| 190 |
|
mulneg2 |
|- ( ( ( log ` x ) e. CC /\ if ( f e. W , 1 , 0 ) e. CC ) -> ( ( log ` x ) x. -u if ( f e. W , 1 , 0 ) ) = -u ( ( log ` x ) x. if ( f e. W , 1 , 0 ) ) ) |
| 191 |
188 189 190
|
sylancl |
|- ( ( ( ph /\ x e. RR+ ) /\ ( f e. D /\ f =/= .1. ) ) -> ( ( log ` x ) x. -u if ( f e. W , 1 , 0 ) ) = -u ( ( log ` x ) x. if ( f e. W , 1 , 0 ) ) ) |
| 192 |
187 191
|
eqtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( f e. D /\ f =/= .1. ) ) -> ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) = -u ( ( log ` x ) x. if ( f e. W , 1 , 0 ) ) ) |
| 193 |
178 192
|
sylan2b |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. ( D \ { .1. } ) ) -> ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) = -u ( ( log ` x ) x. if ( f e. W , 1 , 0 ) ) ) |
| 194 |
193
|
sumeq2dv |
|- ( ( ph /\ x e. RR+ ) -> sum_ f e. ( D \ { .1. } ) ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) = sum_ f e. ( D \ { .1. } ) -u ( ( log ` x ) x. if ( f e. W , 1 , 0 ) ) ) |
| 195 |
|
diffi |
|- ( D e. Fin -> ( D \ { .1. } ) e. Fin ) |
| 196 |
14 195
|
syl |
|- ( ( ph /\ x e. RR+ ) -> ( D \ { .1. } ) e. Fin ) |
| 197 |
51
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. ( D \ { .1. } ) ) -> ( log ` x ) e. CC ) |
| 198 |
|
mulcl |
|- ( ( ( log ` x ) e. CC /\ if ( f e. W , 1 , 0 ) e. CC ) -> ( ( log ` x ) x. if ( f e. W , 1 , 0 ) ) e. CC ) |
| 199 |
197 189 198
|
sylancl |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. ( D \ { .1. } ) ) -> ( ( log ` x ) x. if ( f e. W , 1 , 0 ) ) e. CC ) |
| 200 |
196 199
|
fsumneg |
|- ( ( ph /\ x e. RR+ ) -> sum_ f e. ( D \ { .1. } ) -u ( ( log ` x ) x. if ( f e. W , 1 , 0 ) ) = -u sum_ f e. ( D \ { .1. } ) ( ( log ` x ) x. if ( f e. W , 1 , 0 ) ) ) |
| 201 |
189
|
a1i |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. ( D \ { .1. } ) ) -> if ( f e. W , 1 , 0 ) e. CC ) |
| 202 |
196 51 201
|
fsummulc2 |
|- ( ( ph /\ x e. RR+ ) -> ( ( log ` x ) x. sum_ f e. ( D \ { .1. } ) if ( f e. W , 1 , 0 ) ) = sum_ f e. ( D \ { .1. } ) ( ( log ` x ) x. if ( f e. W , 1 , 0 ) ) ) |
| 203 |
7
|
ssrab3 |
|- W C_ ( D \ { .1. } ) |
| 204 |
|
difss |
|- ( D \ { .1. } ) C_ D |
| 205 |
203 204
|
sstri |
|- W C_ D |
| 206 |
|
ssfi |
|- ( ( D e. Fin /\ W C_ D ) -> W e. Fin ) |
| 207 |
14 205 206
|
sylancl |
|- ( ( ph /\ x e. RR+ ) -> W e. Fin ) |
| 208 |
|
fsumconst |
|- ( ( W e. Fin /\ 1 e. CC ) -> sum_ f e. W 1 = ( ( # ` W ) x. 1 ) ) |
| 209 |
207 53 208
|
sylancl |
|- ( ( ph /\ x e. RR+ ) -> sum_ f e. W 1 = ( ( # ` W ) x. 1 ) ) |
| 210 |
203
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> W C_ ( D \ { .1. } ) ) |
| 211 |
53
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> 1 e. CC ) |
| 212 |
211
|
ralrimivw |
|- ( ( ph /\ x e. RR+ ) -> A. f e. W 1 e. CC ) |
| 213 |
196
|
olcd |
|- ( ( ph /\ x e. RR+ ) -> ( ( D \ { .1. } ) C_ ( ZZ>= ` 1 ) \/ ( D \ { .1. } ) e. Fin ) ) |
| 214 |
|
sumss2 |
|- ( ( ( W C_ ( D \ { .1. } ) /\ A. f e. W 1 e. CC ) /\ ( ( D \ { .1. } ) C_ ( ZZ>= ` 1 ) \/ ( D \ { .1. } ) e. Fin ) ) -> sum_ f e. W 1 = sum_ f e. ( D \ { .1. } ) if ( f e. W , 1 , 0 ) ) |
| 215 |
210 212 213 214
|
syl21anc |
|- ( ( ph /\ x e. RR+ ) -> sum_ f e. W 1 = sum_ f e. ( D \ { .1. } ) if ( f e. W , 1 , 0 ) ) |
| 216 |
|
hashcl |
|- ( W e. Fin -> ( # ` W ) e. NN0 ) |
| 217 |
207 216
|
syl |
|- ( ( ph /\ x e. RR+ ) -> ( # ` W ) e. NN0 ) |
| 218 |
217
|
nn0cnd |
|- ( ( ph /\ x e. RR+ ) -> ( # ` W ) e. CC ) |
| 219 |
218
|
mulridd |
|- ( ( ph /\ x e. RR+ ) -> ( ( # ` W ) x. 1 ) = ( # ` W ) ) |
| 220 |
209 215 219
|
3eqtr3d |
|- ( ( ph /\ x e. RR+ ) -> sum_ f e. ( D \ { .1. } ) if ( f e. W , 1 , 0 ) = ( # ` W ) ) |
| 221 |
220
|
oveq2d |
|- ( ( ph /\ x e. RR+ ) -> ( ( log ` x ) x. sum_ f e. ( D \ { .1. } ) if ( f e. W , 1 , 0 ) ) = ( ( log ` x ) x. ( # ` W ) ) ) |
| 222 |
202 221
|
eqtr3d |
|- ( ( ph /\ x e. RR+ ) -> sum_ f e. ( D \ { .1. } ) ( ( log ` x ) x. if ( f e. W , 1 , 0 ) ) = ( ( log ` x ) x. ( # ` W ) ) ) |
| 223 |
222
|
negeqd |
|- ( ( ph /\ x e. RR+ ) -> -u sum_ f e. ( D \ { .1. } ) ( ( log ` x ) x. if ( f e. W , 1 , 0 ) ) = -u ( ( log ` x ) x. ( # ` W ) ) ) |
| 224 |
194 200 223
|
3eqtrd |
|- ( ( ph /\ x e. RR+ ) -> sum_ f e. ( D \ { .1. } ) ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) = -u ( ( log ` x ) x. ( # ` W ) ) ) |
| 225 |
177 224
|
oveq12d |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ f e. { .1. } ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) + sum_ f e. ( D \ { .1. } ) ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) = ( ( ( log ` x ) x. 1 ) + -u ( ( log ` x ) x. ( # ` W ) ) ) ) |
| 226 |
51 218
|
mulcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( log ` x ) x. ( # ` W ) ) e. CC ) |
| 227 |
173 226
|
negsubd |
|- ( ( ph /\ x e. RR+ ) -> ( ( ( log ` x ) x. 1 ) + -u ( ( log ` x ) x. ( # ` W ) ) ) = ( ( ( log ` x ) x. 1 ) - ( ( log ` x ) x. ( # ` W ) ) ) ) |
| 228 |
225 227
|
eqtrd |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ f e. { .1. } ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) + sum_ f e. ( D \ { .1. } ) ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) = ( ( ( log ` x ) x. 1 ) - ( ( log ` x ) x. ( # ` W ) ) ) ) |
| 229 |
|
disjdif |
|- ( { .1. } i^i ( D \ { .1. } ) ) = (/) |
| 230 |
229
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> ( { .1. } i^i ( D \ { .1. } ) ) = (/) ) |
| 231 |
|
undif2 |
|- ( { .1. } u. ( D \ { .1. } ) ) = ( { .1. } u. D ) |
| 232 |
171
|
snssd |
|- ( ( ph /\ x e. RR+ ) -> { .1. } C_ D ) |
| 233 |
|
ssequn1 |
|- ( { .1. } C_ D <-> ( { .1. } u. D ) = D ) |
| 234 |
232 233
|
sylib |
|- ( ( ph /\ x e. RR+ ) -> ( { .1. } u. D ) = D ) |
| 235 |
231 234
|
eqtr2id |
|- ( ( ph /\ x e. RR+ ) -> D = ( { .1. } u. ( D \ { .1. } ) ) ) |
| 236 |
230 235 14 59
|
fsumsplit |
|- ( ( ph /\ x e. RR+ ) -> sum_ f e. D ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) = ( sum_ f e. { .1. } ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) + sum_ f e. ( D \ { .1. } ) ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) |
| 237 |
51 211 218
|
subdid |
|- ( ( ph /\ x e. RR+ ) -> ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) = ( ( ( log ` x ) x. 1 ) - ( ( log ` x ) x. ( # ` W ) ) ) ) |
| 238 |
228 236 237
|
3eqtr4rd |
|- ( ( ph /\ x e. RR+ ) -> ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) = sum_ f e. D ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) |
| 239 |
167 238
|
oveq12d |
|- ( ( ph /\ x e. RR+ ) -> ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) = ( sum_ f e. D sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( * ` ( f ` A ) ) x. ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) - sum_ f e. D ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) |
| 240 |
60 116 239
|
3eqtr4d |
|- ( ( ph /\ x e. RR+ ) -> sum_ f e. D ( ( * ` ( f ` A ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) = ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) |
| 241 |
240
|
mpteq2dva |
|- ( ph -> ( x e. RR+ |-> sum_ f e. D ( ( * ` ( f ` A ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) ) = ( x e. RR+ |-> ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) ) |
| 242 |
|
rpssre |
|- RR+ C_ RR |
| 243 |
242
|
a1i |
|- ( ph -> RR+ C_ RR ) |
| 244 |
3 13
|
syl |
|- ( ph -> D e. Fin ) |
| 245 |
22
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( f ` A ) e. CC ) |
| 246 |
245
|
cjcld |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( * ` ( f ` A ) ) e. CC ) |
| 247 |
62 59
|
subcld |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) e. CC ) |
| 248 |
246 247
|
mulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ f e. D ) -> ( ( * ` ( f ` A ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) e. CC ) |
| 249 |
248
|
anasss |
|- ( ( ph /\ ( x e. RR+ /\ f e. D ) ) -> ( ( * ` ( f ` A ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) e. CC ) |
| 250 |
23
|
adantr |
|- ( ( ( ph /\ f e. D ) /\ x e. RR+ ) -> ( * ` ( f ` A ) ) e. CC ) |
| 251 |
247
|
an32s |
|- ( ( ( ph /\ f e. D ) /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) e. CC ) |
| 252 |
|
o1const |
|- ( ( RR+ C_ RR /\ ( * ` ( f ` A ) ) e. CC ) -> ( x e. RR+ |-> ( * ` ( f ` A ) ) ) e. O(1) ) |
| 253 |
242 23 252
|
sylancr |
|- ( ( ph /\ f e. D ) -> ( x e. RR+ |-> ( * ` ( f ` A ) ) ) e. O(1) ) |
| 254 |
|
fveq1 |
|- ( f = .1. -> ( f ` ( L ` n ) ) = ( .1. ` ( L ` n ) ) ) |
| 255 |
254
|
oveq1d |
|- ( f = .1. -> ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) = ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) |
| 256 |
255
|
sumeq2sdv |
|- ( f = .1. -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) |
| 257 |
256 175
|
oveq12d |
|- ( f = .1. -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. 1 ) ) ) |
| 258 |
257
|
adantl |
|- ( ( ( ph /\ f e. D ) /\ f = .1. ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. 1 ) ) ) |
| 259 |
49
|
recnd |
|- ( x e. RR+ -> ( log ` x ) e. CC ) |
| 260 |
259
|
mulridd |
|- ( x e. RR+ -> ( ( log ` x ) x. 1 ) = ( log ` x ) ) |
| 261 |
260
|
oveq2d |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. 1 ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) |
| 262 |
258 261
|
sylan9eq |
|- ( ( ( ( ph /\ f e. D ) /\ f = .1. ) /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) |
| 263 |
262
|
mpteq2dva |
|- ( ( ( ph /\ f e. D ) /\ f = .1. ) -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) ) |
| 264 |
1 2 3 4 5 6
|
rpvmasumlem |
|- ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) e. O(1) ) |
| 265 |
264
|
ad2antrr |
|- ( ( ( ph /\ f e. D ) /\ f = .1. ) -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) e. O(1) ) |
| 266 |
263 265
|
eqeltrd |
|- ( ( ( ph /\ f e. D ) /\ f = .1. ) -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) e. O(1) ) |
| 267 |
179
|
oveq2d |
|- ( f =/= .1. -> ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) = ( ( log ` x ) x. if ( f e. W , -u 1 , 0 ) ) ) |
| 268 |
267
|
oveq2d |
|- ( f =/= .1. -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f e. W , -u 1 , 0 ) ) ) ) |
| 269 |
51
|
adantlr |
|- ( ( ( ph /\ f e. D ) /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
| 270 |
|
mulcom |
|- ( ( ( log ` x ) e. CC /\ -u 1 e. CC ) -> ( ( log ` x ) x. -u 1 ) = ( -u 1 x. ( log ` x ) ) ) |
| 271 |
269 54 270
|
sylancl |
|- ( ( ( ph /\ f e. D ) /\ x e. RR+ ) -> ( ( log ` x ) x. -u 1 ) = ( -u 1 x. ( log ` x ) ) ) |
| 272 |
269
|
mulm1d |
|- ( ( ( ph /\ f e. D ) /\ x e. RR+ ) -> ( -u 1 x. ( log ` x ) ) = -u ( log ` x ) ) |
| 273 |
271 272
|
eqtrd |
|- ( ( ( ph /\ f e. D ) /\ x e. RR+ ) -> ( ( log ` x ) x. -u 1 ) = -u ( log ` x ) ) |
| 274 |
269
|
mul01d |
|- ( ( ( ph /\ f e. D ) /\ x e. RR+ ) -> ( ( log ` x ) x. 0 ) = 0 ) |
| 275 |
273 274
|
ifeq12d |
|- ( ( ( ph /\ f e. D ) /\ x e. RR+ ) -> if ( f e. W , ( ( log ` x ) x. -u 1 ) , ( ( log ` x ) x. 0 ) ) = if ( f e. W , -u ( log ` x ) , 0 ) ) |
| 276 |
|
ovif2 |
|- ( ( log ` x ) x. if ( f e. W , -u 1 , 0 ) ) = if ( f e. W , ( ( log ` x ) x. -u 1 ) , ( ( log ` x ) x. 0 ) ) |
| 277 |
|
negeq |
|- ( if ( f e. W , ( log ` x ) , 0 ) = ( log ` x ) -> -u if ( f e. W , ( log ` x ) , 0 ) = -u ( log ` x ) ) |
| 278 |
|
negeq |
|- ( if ( f e. W , ( log ` x ) , 0 ) = 0 -> -u if ( f e. W , ( log ` x ) , 0 ) = -u 0 ) |
| 279 |
278 183
|
eqtrdi |
|- ( if ( f e. W , ( log ` x ) , 0 ) = 0 -> -u if ( f e. W , ( log ` x ) , 0 ) = 0 ) |
| 280 |
277 279
|
ifsb |
|- -u if ( f e. W , ( log ` x ) , 0 ) = if ( f e. W , -u ( log ` x ) , 0 ) |
| 281 |
275 276 280
|
3eqtr4g |
|- ( ( ( ph /\ f e. D ) /\ x e. RR+ ) -> ( ( log ` x ) x. if ( f e. W , -u 1 , 0 ) ) = -u if ( f e. W , ( log ` x ) , 0 ) ) |
| 282 |
281
|
oveq2d |
|- ( ( ( ph /\ f e. D ) /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f e. W , -u 1 , 0 ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - -u if ( f e. W , ( log ` x ) , 0 ) ) ) |
| 283 |
62
|
an32s |
|- ( ( ( ph /\ f e. D ) /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
| 284 |
|
ifcl |
|- ( ( ( log ` x ) e. CC /\ 0 e. CC ) -> if ( f e. W , ( log ` x ) , 0 ) e. CC ) |
| 285 |
269 55 284
|
sylancl |
|- ( ( ( ph /\ f e. D ) /\ x e. RR+ ) -> if ( f e. W , ( log ` x ) , 0 ) e. CC ) |
| 286 |
283 285
|
subnegd |
|- ( ( ( ph /\ f e. D ) /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - -u if ( f e. W , ( log ` x ) , 0 ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( f e. W , ( log ` x ) , 0 ) ) ) |
| 287 |
282 286
|
eqtrd |
|- ( ( ( ph /\ f e. D ) /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f e. W , -u 1 , 0 ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( f e. W , ( log ` x ) , 0 ) ) ) |
| 288 |
268 287
|
sylan9eqr |
|- ( ( ( ( ph /\ f e. D ) /\ x e. RR+ ) /\ f =/= .1. ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( f e. W , ( log ` x ) , 0 ) ) ) |
| 289 |
288
|
an32s |
|- ( ( ( ( ph /\ f e. D ) /\ f =/= .1. ) /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( f e. W , ( log ` x ) , 0 ) ) ) |
| 290 |
289
|
mpteq2dva |
|- ( ( ( ph /\ f e. D ) /\ f =/= .1. ) -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( f e. W , ( log ` x ) , 0 ) ) ) ) |
| 291 |
3
|
ad2antrr |
|- ( ( ( ph /\ f e. D ) /\ f =/= .1. ) -> N e. NN ) |
| 292 |
|
simplr |
|- ( ( ( ph /\ f e. D ) /\ f =/= .1. ) -> f e. D ) |
| 293 |
|
simpr |
|- ( ( ( ph /\ f e. D ) /\ f =/= .1. ) -> f =/= .1. ) |
| 294 |
|
eqid |
|- ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) = ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) |
| 295 |
1 2 291 4 5 6 292 293 294
|
dchrmusumlema |
|- ( ( ( ph /\ f e. D ) /\ f =/= .1. ) -> E. t E. c e. ( 0 [,) +oo ) ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) |
| 296 |
3
|
adantr |
|- ( ( ph /\ f e. D ) -> N e. NN ) |
| 297 |
296
|
ad2antrr |
|- ( ( ( ( ph /\ f e. D ) /\ f =/= .1. ) /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> N e. NN ) |
| 298 |
292
|
adantr |
|- ( ( ( ( ph /\ f e. D ) /\ f =/= .1. ) /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> f e. D ) |
| 299 |
|
simplr |
|- ( ( ( ( ph /\ f e. D ) /\ f =/= .1. ) /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> f =/= .1. ) |
| 300 |
|
simprl |
|- ( ( ( ( ph /\ f e. D ) /\ f =/= .1. ) /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> c e. ( 0 [,) +oo ) ) |
| 301 |
|
simprrl |
|- ( ( ( ( ph /\ f e. D ) /\ f =/= .1. ) /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ~~> t ) |
| 302 |
|
simprrr |
|- ( ( ( ( ph /\ f e. D ) /\ f =/= .1. ) /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) |
| 303 |
1 2 297 4 5 6 298 299 294 300 301 302 7
|
dchrvmaeq0 |
|- ( ( ( ( ph /\ f e. D ) /\ f =/= .1. ) /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> ( f e. W <-> t = 0 ) ) |
| 304 |
|
ifbi |
|- ( ( f e. W <-> t = 0 ) -> if ( f e. W , ( log ` x ) , 0 ) = if ( t = 0 , ( log ` x ) , 0 ) ) |
| 305 |
304
|
oveq2d |
|- ( ( f e. W <-> t = 0 ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( f e. W , ( log ` x ) , 0 ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( t = 0 , ( log ` x ) , 0 ) ) ) |
| 306 |
305
|
mpteq2dv |
|- ( ( f e. W <-> t = 0 ) -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( f e. W , ( log ` x ) , 0 ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( t = 0 , ( log ` x ) , 0 ) ) ) ) |
| 307 |
303 306
|
syl |
|- ( ( ( ( ph /\ f e. D ) /\ f =/= .1. ) /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( f e. W , ( log ` x ) , 0 ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( t = 0 , ( log ` x ) , 0 ) ) ) ) |
| 308 |
1 2 297 4 5 6 298 299 294 300 301 302
|
dchrvmasumif |
|- ( ( ( ( ph /\ f e. D ) /\ f =/= .1. ) /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( t = 0 , ( log ` x ) , 0 ) ) ) e. O(1) ) |
| 309 |
307 308
|
eqeltrd |
|- ( ( ( ( ph /\ f e. D ) /\ f =/= .1. ) /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( f e. W , ( log ` x ) , 0 ) ) ) e. O(1) ) |
| 310 |
309
|
rexlimdvaa |
|- ( ( ( ph /\ f e. D ) /\ f =/= .1. ) -> ( E. c e. ( 0 [,) +oo ) ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( f e. W , ( log ` x ) , 0 ) ) ) e. O(1) ) ) |
| 311 |
310
|
exlimdv |
|- ( ( ( ph /\ f e. D ) /\ f =/= .1. ) -> ( E. t E. c e. ( 0 [,) +oo ) ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( f ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( f e. W , ( log ` x ) , 0 ) ) ) e. O(1) ) ) |
| 312 |
295 311
|
mpd |
|- ( ( ( ph /\ f e. D ) /\ f =/= .1. ) -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( f e. W , ( log ` x ) , 0 ) ) ) e. O(1) ) |
| 313 |
290 312
|
eqeltrd |
|- ( ( ( ph /\ f e. D ) /\ f =/= .1. ) -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) e. O(1) ) |
| 314 |
266 313
|
pm2.61dane |
|- ( ( ph /\ f e. D ) -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) e. O(1) ) |
| 315 |
250 251 253 314
|
o1mul2 |
|- ( ( ph /\ f e. D ) -> ( x e. RR+ |-> ( ( * ` ( f ` A ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) ) e. O(1) ) |
| 316 |
243 244 249 315
|
fsumo1 |
|- ( ph -> ( x e. RR+ |-> sum_ f e. D ( ( * ` ( f ` A ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( f ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. if ( f = .1. , 1 , if ( f e. W , -u 1 , 0 ) ) ) ) ) ) e. O(1) ) |
| 317 |
241 316
|
eqeltrrd |
|- ( ph -> ( x e. RR+ |-> ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` n ) / n ) ) - ( ( log ` x ) x. ( 1 - ( # ` W ) ) ) ) ) e. O(1) ) |