| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
| 2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
| 3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
| 4 |
|
rpvmasum.g |
|- G = ( DChr ` N ) |
| 5 |
|
rpvmasum.d |
|- D = ( Base ` G ) |
| 6 |
|
rpvmasum.1 |
|- .1. = ( 0g ` G ) |
| 7 |
|
reex |
|- RR e. _V |
| 8 |
|
rpssre |
|- RR+ C_ RR |
| 9 |
7 8
|
ssexi |
|- RR+ e. _V |
| 10 |
9
|
a1i |
|- ( ph -> RR+ e. _V ) |
| 11 |
|
fzfid |
|- ( ph -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 12 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
| 13 |
12
|
adantl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 14 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
| 15 |
13 14
|
syl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
| 16 |
15 13
|
nndivred |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
| 17 |
16
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) |
| 18 |
11 17
|
fsumcl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. CC ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. CC ) |
| 20 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
| 22 |
21
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
| 23 |
19 22
|
subcld |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) e. CC ) |
| 24 |
|
1re |
|- 1 e. RR |
| 25 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
| 26 |
4 1 6 25 3
|
dchr1re |
|- ( ph -> .1. : ( Base ` Z ) --> RR ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> .1. : ( Base ` Z ) --> RR ) |
| 28 |
3
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 29 |
1 25 2
|
znzrhfo |
|- ( N e. NN0 -> L : ZZ -onto-> ( Base ` Z ) ) |
| 30 |
|
fof |
|- ( L : ZZ -onto-> ( Base ` Z ) -> L : ZZ --> ( Base ` Z ) ) |
| 31 |
28 29 30
|
3syl |
|- ( ph -> L : ZZ --> ( Base ` Z ) ) |
| 32 |
|
elfzelz |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. ZZ ) |
| 33 |
|
ffvelcdm |
|- ( ( L : ZZ --> ( Base ` Z ) /\ n e. ZZ ) -> ( L ` n ) e. ( Base ` Z ) ) |
| 34 |
31 32 33
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( L ` n ) e. ( Base ` Z ) ) |
| 35 |
27 34
|
ffvelcdmd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( .1. ` ( L ` n ) ) e. RR ) |
| 36 |
|
resubcl |
|- ( ( 1 e. RR /\ ( .1. ` ( L ` n ) ) e. RR ) -> ( 1 - ( .1. ` ( L ` n ) ) ) e. RR ) |
| 37 |
24 35 36
|
sylancr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 - ( .1. ` ( L ` n ) ) ) e. RR ) |
| 38 |
37 16
|
remulcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) e. RR ) |
| 39 |
38
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
| 40 |
11 39
|
fsumcl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
| 42 |
|
eqidd |
|- ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) ) |
| 43 |
|
eqidd |
|- ( ph -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 44 |
10 23 41 42 43
|
offval2 |
|- ( ph -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) ) |
| 45 |
19 22 41
|
sub32d |
|- ( ( ph /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) - ( log ` x ) ) ) |
| 46 |
11 17 39
|
fsumsub |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) - ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 47 |
|
1cnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) |
| 48 |
37
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 - ( .1. ` ( L ` n ) ) ) e. CC ) |
| 49 |
47 48 17
|
subdird |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 - ( 1 - ( .1. ` ( L ` n ) ) ) ) x. ( ( Lam ` n ) / n ) ) = ( ( 1 x. ( ( Lam ` n ) / n ) ) - ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 50 |
|
ax-1cn |
|- 1 e. CC |
| 51 |
35
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( .1. ` ( L ` n ) ) e. CC ) |
| 52 |
|
nncan |
|- ( ( 1 e. CC /\ ( .1. ` ( L ` n ) ) e. CC ) -> ( 1 - ( 1 - ( .1. ` ( L ` n ) ) ) ) = ( .1. ` ( L ` n ) ) ) |
| 53 |
50 51 52
|
sylancr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 - ( 1 - ( .1. ` ( L ` n ) ) ) ) = ( .1. ` ( L ` n ) ) ) |
| 54 |
53
|
oveq1d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 - ( 1 - ( .1. ` ( L ` n ) ) ) ) x. ( ( Lam ` n ) / n ) ) = ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) |
| 55 |
17
|
mullidd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. ( ( Lam ` n ) / n ) ) = ( ( Lam ` n ) / n ) ) |
| 56 |
55
|
oveq1d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 x. ( ( Lam ` n ) / n ) ) - ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = ( ( ( Lam ` n ) / n ) - ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
| 57 |
49 54 56
|
3eqtr3rd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) - ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) |
| 58 |
57
|
sumeq2dv |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) - ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) |
| 59 |
46 58
|
eqtr3d |
|- ( ph -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) |
| 60 |
59
|
oveq1d |
|- ( ph -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) - ( log ` x ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) |
| 61 |
60
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) - ( log ` x ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) |
| 62 |
45 61
|
eqtrd |
|- ( ( ph /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) |
| 63 |
62
|
mpteq2dva |
|- ( ph -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) ) |
| 64 |
44 63
|
eqtrd |
|- ( ph -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) ) |
| 65 |
|
vmadivsum |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) |
| 66 |
8
|
a1i |
|- ( ph -> RR+ C_ RR ) |
| 67 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 68 |
|
prmdvdsfi |
|- ( N e. NN -> { q e. Prime | q || N } e. Fin ) |
| 69 |
3 68
|
syl |
|- ( ph -> { q e. Prime | q || N } e. Fin ) |
| 70 |
|
elrabi |
|- ( p e. { q e. Prime | q || N } -> p e. Prime ) |
| 71 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
| 72 |
71
|
adantl |
|- ( ( ph /\ p e. Prime ) -> p e. NN ) |
| 73 |
72
|
nnrpd |
|- ( ( ph /\ p e. Prime ) -> p e. RR+ ) |
| 74 |
73
|
relogcld |
|- ( ( ph /\ p e. Prime ) -> ( log ` p ) e. RR ) |
| 75 |
|
prmuz2 |
|- ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) |
| 76 |
75
|
adantl |
|- ( ( ph /\ p e. Prime ) -> p e. ( ZZ>= ` 2 ) ) |
| 77 |
|
uz2m1nn |
|- ( p e. ( ZZ>= ` 2 ) -> ( p - 1 ) e. NN ) |
| 78 |
76 77
|
syl |
|- ( ( ph /\ p e. Prime ) -> ( p - 1 ) e. NN ) |
| 79 |
74 78
|
nndivred |
|- ( ( ph /\ p e. Prime ) -> ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
| 80 |
70 79
|
sylan2 |
|- ( ( ph /\ p e. { q e. Prime | q || N } ) -> ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
| 81 |
69 80
|
fsumrecl |
|- ( ph -> sum_ p e. { q e. Prime | q || N } ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
| 82 |
|
fzfid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 83 |
|
simpr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) = 0 ) -> ( .1. ` ( L ` n ) ) = 0 ) |
| 84 |
|
0re |
|- 0 e. RR |
| 85 |
83 84
|
eqeltrdi |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) = 0 ) -> ( .1. ` ( L ` n ) ) e. RR ) |
| 86 |
|
eqid |
|- ( Unit ` Z ) = ( Unit ` Z ) |
| 87 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) =/= 0 ) -> N e. NN ) |
| 88 |
4
|
dchrabl |
|- ( N e. NN -> G e. Abel ) |
| 89 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 90 |
5 6
|
grpidcl |
|- ( G e. Grp -> .1. e. D ) |
| 91 |
3 88 89 90
|
4syl |
|- ( ph -> .1. e. D ) |
| 92 |
91
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> .1. e. D ) |
| 93 |
34
|
adantlr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( L ` n ) e. ( Base ` Z ) ) |
| 94 |
4 1 5 25 86 92 93
|
dchrn0 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( .1. ` ( L ` n ) ) =/= 0 <-> ( L ` n ) e. ( Unit ` Z ) ) ) |
| 95 |
94
|
biimpa |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) =/= 0 ) -> ( L ` n ) e. ( Unit ` Z ) ) |
| 96 |
4 1 6 86 87 95
|
dchr1 |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) =/= 0 ) -> ( .1. ` ( L ` n ) ) = 1 ) |
| 97 |
96 24
|
eqeltrdi |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) =/= 0 ) -> ( .1. ` ( L ` n ) ) e. RR ) |
| 98 |
85 97
|
pm2.61dane |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( .1. ` ( L ` n ) ) e. RR ) |
| 99 |
24 98 36
|
sylancr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 - ( .1. ` ( L ` n ) ) ) e. RR ) |
| 100 |
16
|
adantlr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
| 101 |
99 100
|
remulcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) e. RR ) |
| 102 |
82 101
|
fsumrecl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) e. RR ) |
| 103 |
|
0le1 |
|- 0 <_ 1 |
| 104 |
83 103
|
eqbrtrdi |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) = 0 ) -> ( .1. ` ( L ` n ) ) <_ 1 ) |
| 105 |
24
|
leidi |
|- 1 <_ 1 |
| 106 |
96 105
|
eqbrtrdi |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) =/= 0 ) -> ( .1. ` ( L ` n ) ) <_ 1 ) |
| 107 |
104 106
|
pm2.61dane |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( .1. ` ( L ` n ) ) <_ 1 ) |
| 108 |
|
subge0 |
|- ( ( 1 e. RR /\ ( .1. ` ( L ` n ) ) e. RR ) -> ( 0 <_ ( 1 - ( .1. ` ( L ` n ) ) ) <-> ( .1. ` ( L ` n ) ) <_ 1 ) ) |
| 109 |
24 98 108
|
sylancr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 0 <_ ( 1 - ( .1. ` ( L ` n ) ) ) <-> ( .1. ` ( L ` n ) ) <_ 1 ) ) |
| 110 |
107 109
|
mpbird |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( 1 - ( .1. ` ( L ` n ) ) ) ) |
| 111 |
15
|
adantlr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
| 112 |
12
|
adantl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 113 |
|
vmage0 |
|- ( n e. NN -> 0 <_ ( Lam ` n ) ) |
| 114 |
112 113
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( Lam ` n ) ) |
| 115 |
112
|
nnred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR ) |
| 116 |
112
|
nngt0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 < n ) |
| 117 |
|
divge0 |
|- ( ( ( ( Lam ` n ) e. RR /\ 0 <_ ( Lam ` n ) ) /\ ( n e. RR /\ 0 < n ) ) -> 0 <_ ( ( Lam ` n ) / n ) ) |
| 118 |
111 114 115 116 117
|
syl22anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( Lam ` n ) / n ) ) |
| 119 |
99 100 110 118
|
mulge0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) |
| 120 |
82 101 119
|
fsumge0 |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) |
| 121 |
102 120
|
absidd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) |
| 122 |
69
|
adantr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> { q e. Prime | q || N } e. Fin ) |
| 123 |
|
inss2 |
|- ( ( 0 [,] x ) i^i Prime ) C_ Prime |
| 124 |
|
rabss2 |
|- ( ( ( 0 [,] x ) i^i Prime ) C_ Prime -> { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } C_ { q e. Prime | q || N } ) |
| 125 |
123 124
|
mp1i |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } C_ { q e. Prime | q || N } ) |
| 126 |
122 125
|
ssfid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } e. Fin ) |
| 127 |
|
ssrab2 |
|- { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } C_ ( ( 0 [,] x ) i^i Prime ) |
| 128 |
127 123
|
sstri |
|- { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } C_ Prime |
| 129 |
128
|
sseli |
|- ( p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } -> p e. Prime ) |
| 130 |
79
|
adantlr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
| 131 |
129 130
|
sylan2 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ) -> ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
| 132 |
126 131
|
fsumrecl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
| 133 |
81
|
adantr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ p e. { q e. Prime | q || N } ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
| 134 |
|
2fveq3 |
|- ( n = ( p ^ k ) -> ( .1. ` ( L ` n ) ) = ( .1. ` ( L ` ( p ^ k ) ) ) ) |
| 135 |
134
|
oveq2d |
|- ( n = ( p ^ k ) -> ( 1 - ( .1. ` ( L ` n ) ) ) = ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) ) |
| 136 |
|
fveq2 |
|- ( n = ( p ^ k ) -> ( Lam ` n ) = ( Lam ` ( p ^ k ) ) ) |
| 137 |
|
id |
|- ( n = ( p ^ k ) -> n = ( p ^ k ) ) |
| 138 |
136 137
|
oveq12d |
|- ( n = ( p ^ k ) -> ( ( Lam ` n ) / n ) = ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) |
| 139 |
135 138
|
oveq12d |
|- ( n = ( p ^ k ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) = ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) ) |
| 140 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 141 |
140
|
ad2antrl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR ) |
| 142 |
39
|
adantlr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
| 143 |
|
simprr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( Lam ` n ) = 0 ) |
| 144 |
143
|
oveq1d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( ( Lam ` n ) / n ) = ( 0 / n ) ) |
| 145 |
12
|
ad2antrl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> n e. NN ) |
| 146 |
145
|
nncnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> n e. CC ) |
| 147 |
145
|
nnne0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> n =/= 0 ) |
| 148 |
146 147
|
div0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( 0 / n ) = 0 ) |
| 149 |
144 148
|
eqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( ( Lam ` n ) / n ) = 0 ) |
| 150 |
149
|
oveq2d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) = ( ( 1 - ( .1. ` ( L ` n ) ) ) x. 0 ) ) |
| 151 |
48
|
ad2ant2r |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( 1 - ( .1. ` ( L ` n ) ) ) e. CC ) |
| 152 |
151
|
mul01d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. 0 ) = 0 ) |
| 153 |
150 152
|
eqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) = 0 ) |
| 154 |
139 141 142 153
|
fsumvma2 |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) = sum_ p e. ( ( 0 [,] x ) i^i Prime ) sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) ) |
| 155 |
127
|
a1i |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } C_ ( ( 0 [,] x ) i^i Prime ) ) |
| 156 |
|
fzfid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) e. Fin ) |
| 157 |
26
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> .1. : ( Base ` Z ) --> RR ) |
| 158 |
31
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> L : ZZ --> ( Base ` Z ) ) |
| 159 |
71
|
ad2antrl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> p e. NN ) |
| 160 |
|
elfznn |
|- ( k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) -> k e. NN ) |
| 161 |
160
|
ad2antll |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> k e. NN ) |
| 162 |
161
|
nnnn0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> k e. NN0 ) |
| 163 |
159 162
|
nnexpcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( p ^ k ) e. NN ) |
| 164 |
163
|
nnzd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( p ^ k ) e. ZZ ) |
| 165 |
158 164
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( L ` ( p ^ k ) ) e. ( Base ` Z ) ) |
| 166 |
157 165
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( .1. ` ( L ` ( p ^ k ) ) ) e. RR ) |
| 167 |
|
resubcl |
|- ( ( 1 e. RR /\ ( .1. ` ( L ` ( p ^ k ) ) ) e. RR ) -> ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) e. RR ) |
| 168 |
24 166 167
|
sylancr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) e. RR ) |
| 169 |
|
vmacl |
|- ( ( p ^ k ) e. NN -> ( Lam ` ( p ^ k ) ) e. RR ) |
| 170 |
163 169
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( Lam ` ( p ^ k ) ) e. RR ) |
| 171 |
170 163
|
nndivred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) e. RR ) |
| 172 |
168 171
|
remulcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) e. RR ) |
| 173 |
172
|
anassrs |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) e. RR ) |
| 174 |
173
|
recnd |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) e. CC ) |
| 175 |
156 174
|
fsumcl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) e. CC ) |
| 176 |
129 175
|
sylan2 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) e. CC ) |
| 177 |
|
breq1 |
|- ( q = p -> ( q || N <-> p || N ) ) |
| 178 |
177
|
notbid |
|- ( q = p -> ( -. q || N <-> -. p || N ) ) |
| 179 |
|
notrab |
|- ( ( ( 0 [,] x ) i^i Prime ) \ { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ) = { q e. ( ( 0 [,] x ) i^i Prime ) | -. q || N } |
| 180 |
178 179
|
elrab2 |
|- ( p e. ( ( ( 0 [,] x ) i^i Prime ) \ { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ) <-> ( p e. ( ( 0 [,] x ) i^i Prime ) /\ -. p || N ) ) |
| 181 |
123
|
sseli |
|- ( p e. ( ( 0 [,] x ) i^i Prime ) -> p e. Prime ) |
| 182 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> N e. NN ) |
| 183 |
|
simplrr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> -. p || N ) |
| 184 |
|
simplrl |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> p e. Prime ) |
| 185 |
182
|
nnzd |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> N e. ZZ ) |
| 186 |
|
coprm |
|- ( ( p e. Prime /\ N e. ZZ ) -> ( -. p || N <-> ( p gcd N ) = 1 ) ) |
| 187 |
184 185 186
|
syl2anc |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( -. p || N <-> ( p gcd N ) = 1 ) ) |
| 188 |
183 187
|
mpbid |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( p gcd N ) = 1 ) |
| 189 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
| 190 |
184 189
|
syl |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> p e. ZZ ) |
| 191 |
160
|
adantl |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> k e. NN ) |
| 192 |
191
|
nnnn0d |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> k e. NN0 ) |
| 193 |
|
rpexp1i |
|- ( ( p e. ZZ /\ N e. ZZ /\ k e. NN0 ) -> ( ( p gcd N ) = 1 -> ( ( p ^ k ) gcd N ) = 1 ) ) |
| 194 |
190 185 192 193
|
syl3anc |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( p gcd N ) = 1 -> ( ( p ^ k ) gcd N ) = 1 ) ) |
| 195 |
188 194
|
mpd |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( p ^ k ) gcd N ) = 1 ) |
| 196 |
182
|
nnnn0d |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> N e. NN0 ) |
| 197 |
164
|
anassrs |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( p ^ k ) e. ZZ ) |
| 198 |
197
|
adantlrr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( p ^ k ) e. ZZ ) |
| 199 |
1 86 2
|
znunit |
|- ( ( N e. NN0 /\ ( p ^ k ) e. ZZ ) -> ( ( L ` ( p ^ k ) ) e. ( Unit ` Z ) <-> ( ( p ^ k ) gcd N ) = 1 ) ) |
| 200 |
196 198 199
|
syl2anc |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( L ` ( p ^ k ) ) e. ( Unit ` Z ) <-> ( ( p ^ k ) gcd N ) = 1 ) ) |
| 201 |
195 200
|
mpbird |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( L ` ( p ^ k ) ) e. ( Unit ` Z ) ) |
| 202 |
4 1 6 86 182 201
|
dchr1 |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( .1. ` ( L ` ( p ^ k ) ) ) = 1 ) |
| 203 |
202
|
oveq2d |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) = ( 1 - 1 ) ) |
| 204 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 205 |
203 204
|
eqtrdi |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) = 0 ) |
| 206 |
205
|
oveq1d |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = ( 0 x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) ) |
| 207 |
171
|
recnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) e. CC ) |
| 208 |
207
|
anassrs |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) e. CC ) |
| 209 |
208
|
adantlrr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) e. CC ) |
| 210 |
209
|
mul02d |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( 0 x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = 0 ) |
| 211 |
206 210
|
eqtrd |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = 0 ) |
| 212 |
211
|
sumeq2dv |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) 0 ) |
| 213 |
|
fzfid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) -> ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) e. Fin ) |
| 214 |
213
|
olcd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) -> ( ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) e. Fin ) ) |
| 215 |
|
sumz |
|- ( ( ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) e. Fin ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) 0 = 0 ) |
| 216 |
214 215
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) 0 = 0 ) |
| 217 |
212 216
|
eqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = 0 ) |
| 218 |
181 217
|
sylanr1 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. ( ( 0 [,] x ) i^i Prime ) /\ -. p || N ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = 0 ) |
| 219 |
180 218
|
sylan2b |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. ( ( ( 0 [,] x ) i^i Prime ) \ { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = 0 ) |
| 220 |
|
ppifi |
|- ( x e. RR -> ( ( 0 [,] x ) i^i Prime ) e. Fin ) |
| 221 |
141 220
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( 0 [,] x ) i^i Prime ) e. Fin ) |
| 222 |
155 176 219 221
|
fsumss |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = sum_ p e. ( ( 0 [,] x ) i^i Prime ) sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) ) |
| 223 |
154 222
|
eqtr4d |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) = sum_ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) ) |
| 224 |
156 173
|
fsumrecl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) e. RR ) |
| 225 |
129 224
|
sylan2 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) e. RR ) |
| 226 |
74
|
adantlr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( log ` p ) e. RR ) |
| 227 |
71
|
adantl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> p e. NN ) |
| 228 |
227
|
nnrecred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 / p ) e. RR ) |
| 229 |
227
|
nnrpd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> p e. RR+ ) |
| 230 |
229
|
rpreccld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 / p ) e. RR+ ) |
| 231 |
|
simplrl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> x e. RR+ ) |
| 232 |
231
|
relogcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( log ` x ) e. RR ) |
| 233 |
227
|
nnred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> p e. RR ) |
| 234 |
75
|
adantl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> p e. ( ZZ>= ` 2 ) ) |
| 235 |
|
eluz2gt1 |
|- ( p e. ( ZZ>= ` 2 ) -> 1 < p ) |
| 236 |
234 235
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 1 < p ) |
| 237 |
233 236
|
rplogcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( log ` p ) e. RR+ ) |
| 238 |
232 237
|
rerpdivcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` x ) / ( log ` p ) ) e. RR ) |
| 239 |
238
|
flcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) e. ZZ ) |
| 240 |
239
|
peano2zd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) e. ZZ ) |
| 241 |
230 240
|
rpexpcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) e. RR+ ) |
| 242 |
241
|
rpred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) e. RR ) |
| 243 |
228 242
|
resubcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) e. RR ) |
| 244 |
234 77
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( p - 1 ) e. NN ) |
| 245 |
244
|
nnrpd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( p - 1 ) e. RR+ ) |
| 246 |
245 229
|
rpdivcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( p - 1 ) / p ) e. RR+ ) |
| 247 |
243 246
|
rerpdivcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) e. RR ) |
| 248 |
226 247
|
remulcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) x. ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) e. RR ) |
| 249 |
170
|
recnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( Lam ` ( p ^ k ) ) e. CC ) |
| 250 |
163
|
nncnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( p ^ k ) e. CC ) |
| 251 |
163
|
nnne0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( p ^ k ) =/= 0 ) |
| 252 |
249 250 251
|
divrecd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) = ( ( Lam ` ( p ^ k ) ) x. ( 1 / ( p ^ k ) ) ) ) |
| 253 |
|
simprl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> p e. Prime ) |
| 254 |
|
vmappw |
|- ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
| 255 |
253 161 254
|
syl2anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
| 256 |
159
|
nncnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> p e. CC ) |
| 257 |
159
|
nnne0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> p =/= 0 ) |
| 258 |
|
elfzelz |
|- ( k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) -> k e. ZZ ) |
| 259 |
258
|
ad2antll |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> k e. ZZ ) |
| 260 |
256 257 259
|
exprecd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( 1 / p ) ^ k ) = ( 1 / ( p ^ k ) ) ) |
| 261 |
260
|
eqcomd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( 1 / ( p ^ k ) ) = ( ( 1 / p ) ^ k ) ) |
| 262 |
255 261
|
oveq12d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) x. ( 1 / ( p ^ k ) ) ) = ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
| 263 |
252 262
|
eqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) = ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
| 264 |
263 171
|
eqeltrrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) e. RR ) |
| 265 |
264
|
anassrs |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) e. RR ) |
| 266 |
|
1red |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> 1 e. RR ) |
| 267 |
|
vmage0 |
|- ( ( p ^ k ) e. NN -> 0 <_ ( Lam ` ( p ^ k ) ) ) |
| 268 |
163 267
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> 0 <_ ( Lam ` ( p ^ k ) ) ) |
| 269 |
163
|
nnred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( p ^ k ) e. RR ) |
| 270 |
163
|
nngt0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> 0 < ( p ^ k ) ) |
| 271 |
|
divge0 |
|- ( ( ( ( Lam ` ( p ^ k ) ) e. RR /\ 0 <_ ( Lam ` ( p ^ k ) ) ) /\ ( ( p ^ k ) e. RR /\ 0 < ( p ^ k ) ) ) -> 0 <_ ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) |
| 272 |
170 268 269 270 271
|
syl22anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> 0 <_ ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) |
| 273 |
84
|
leidi |
|- 0 <_ 0 |
| 274 |
|
simpr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) /\ ( .1. ` ( L ` ( p ^ k ) ) ) = 0 ) -> ( .1. ` ( L ` ( p ^ k ) ) ) = 0 ) |
| 275 |
273 274
|
breqtrrid |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) /\ ( .1. ` ( L ` ( p ^ k ) ) ) = 0 ) -> 0 <_ ( .1. ` ( L ` ( p ^ k ) ) ) ) |
| 276 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) /\ ( .1. ` ( L ` ( p ^ k ) ) ) =/= 0 ) -> N e. NN ) |
| 277 |
91
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> .1. e. D ) |
| 278 |
4 1 5 25 86 277 165
|
dchrn0 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( .1. ` ( L ` ( p ^ k ) ) ) =/= 0 <-> ( L ` ( p ^ k ) ) e. ( Unit ` Z ) ) ) |
| 279 |
278
|
biimpa |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) /\ ( .1. ` ( L ` ( p ^ k ) ) ) =/= 0 ) -> ( L ` ( p ^ k ) ) e. ( Unit ` Z ) ) |
| 280 |
4 1 6 86 276 279
|
dchr1 |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) /\ ( .1. ` ( L ` ( p ^ k ) ) ) =/= 0 ) -> ( .1. ` ( L ` ( p ^ k ) ) ) = 1 ) |
| 281 |
103 280
|
breqtrrid |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) /\ ( .1. ` ( L ` ( p ^ k ) ) ) =/= 0 ) -> 0 <_ ( .1. ` ( L ` ( p ^ k ) ) ) ) |
| 282 |
275 281
|
pm2.61dane |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> 0 <_ ( .1. ` ( L ` ( p ^ k ) ) ) ) |
| 283 |
|
subge02 |
|- ( ( 1 e. RR /\ ( .1. ` ( L ` ( p ^ k ) ) ) e. RR ) -> ( 0 <_ ( .1. ` ( L ` ( p ^ k ) ) ) <-> ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) <_ 1 ) ) |
| 284 |
24 166 283
|
sylancr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( 0 <_ ( .1. ` ( L ` ( p ^ k ) ) ) <-> ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) <_ 1 ) ) |
| 285 |
282 284
|
mpbid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) <_ 1 ) |
| 286 |
168 266 171 272 285
|
lemul1ad |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ ( 1 x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) ) |
| 287 |
207
|
mullidd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( 1 x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) |
| 288 |
287 263
|
eqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( 1 x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
| 289 |
286 288
|
breqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
| 290 |
289
|
anassrs |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
| 291 |
156 173 265 290
|
fsumle |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
| 292 |
226
|
recnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( log ` p ) e. CC ) |
| 293 |
159
|
nnrecred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( 1 / p ) e. RR ) |
| 294 |
293 162
|
reexpcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( 1 / p ) ^ k ) e. RR ) |
| 295 |
294
|
recnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( 1 / p ) ^ k ) e. CC ) |
| 296 |
295
|
anassrs |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( 1 / p ) ^ k ) e. CC ) |
| 297 |
156 292 296
|
fsummulc2 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) x. sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 / p ) ^ k ) ) = sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
| 298 |
|
fzval3 |
|- ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) e. ZZ -> ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) = ( 1 ..^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) |
| 299 |
239 298
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) = ( 1 ..^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) |
| 300 |
299
|
sumeq1d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 / p ) ^ k ) = sum_ k e. ( 1 ..^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ( ( 1 / p ) ^ k ) ) |
| 301 |
228
|
recnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 / p ) e. CC ) |
| 302 |
227
|
nngt0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 0 < p ) |
| 303 |
|
recgt1 |
|- ( ( p e. RR /\ 0 < p ) -> ( 1 < p <-> ( 1 / p ) < 1 ) ) |
| 304 |
233 302 303
|
syl2anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 < p <-> ( 1 / p ) < 1 ) ) |
| 305 |
236 304
|
mpbid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 / p ) < 1 ) |
| 306 |
228 305
|
ltned |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 / p ) =/= 1 ) |
| 307 |
|
1nn0 |
|- 1 e. NN0 |
| 308 |
307
|
a1i |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 1 e. NN0 ) |
| 309 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 310 |
|
simprr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x ) |
| 311 |
|
1rp |
|- 1 e. RR+ |
| 312 |
|
simprl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR+ ) |
| 313 |
|
logleb |
|- ( ( 1 e. RR+ /\ x e. RR+ ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) |
| 314 |
311 312 313
|
sylancr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) |
| 315 |
310 314
|
mpbid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` 1 ) <_ ( log ` x ) ) |
| 316 |
309 315
|
eqbrtrrid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( log ` x ) ) |
| 317 |
316
|
adantr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 0 <_ ( log ` x ) ) |
| 318 |
232 237 317
|
divge0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 0 <_ ( ( log ` x ) / ( log ` p ) ) ) |
| 319 |
|
flge0nn0 |
|- ( ( ( ( log ` x ) / ( log ` p ) ) e. RR /\ 0 <_ ( ( log ` x ) / ( log ` p ) ) ) -> ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) e. NN0 ) |
| 320 |
238 318 319
|
syl2anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) e. NN0 ) |
| 321 |
|
nn0p1nn |
|- ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) e. NN0 -> ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) e. NN ) |
| 322 |
320 321
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) e. NN ) |
| 323 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 324 |
322 323
|
eleqtrdi |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 325 |
301 306 308 324
|
geoserg |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ..^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ( ( 1 / p ) ^ k ) = ( ( ( ( 1 / p ) ^ 1 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) ) |
| 326 |
301
|
exp1d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( 1 / p ) ^ 1 ) = ( 1 / p ) ) |
| 327 |
326
|
oveq1d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( ( 1 / p ) ^ 1 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) = ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) ) |
| 328 |
227
|
nncnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> p e. CC ) |
| 329 |
|
1cnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 1 e. CC ) |
| 330 |
229
|
rpcnne0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( p e. CC /\ p =/= 0 ) ) |
| 331 |
|
divsubdir |
|- ( ( p e. CC /\ 1 e. CC /\ ( p e. CC /\ p =/= 0 ) ) -> ( ( p - 1 ) / p ) = ( ( p / p ) - ( 1 / p ) ) ) |
| 332 |
328 329 330 331
|
syl3anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( p - 1 ) / p ) = ( ( p / p ) - ( 1 / p ) ) ) |
| 333 |
|
divid |
|- ( ( p e. CC /\ p =/= 0 ) -> ( p / p ) = 1 ) |
| 334 |
330 333
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( p / p ) = 1 ) |
| 335 |
334
|
oveq1d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( p / p ) - ( 1 / p ) ) = ( 1 - ( 1 / p ) ) ) |
| 336 |
332 335
|
eqtr2d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 - ( 1 / p ) ) = ( ( p - 1 ) / p ) ) |
| 337 |
327 336
|
oveq12d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( ( ( 1 / p ) ^ 1 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) = ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) |
| 338 |
300 325 337
|
3eqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 / p ) ^ k ) = ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) |
| 339 |
338
|
oveq2d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) x. sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 / p ) ^ k ) ) = ( ( log ` p ) x. ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) ) |
| 340 |
297 339
|
eqtr3d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) = ( ( log ` p ) x. ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) ) |
| 341 |
291 340
|
breqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ ( ( log ` p ) x. ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) ) |
| 342 |
241
|
rpge0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 0 <_ ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) |
| 343 |
228 242
|
subge02d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 0 <_ ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) <-> ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) <_ ( 1 / p ) ) ) |
| 344 |
342 343
|
mpbid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) <_ ( 1 / p ) ) |
| 345 |
245
|
rpcnne0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( p - 1 ) e. CC /\ ( p - 1 ) =/= 0 ) ) |
| 346 |
|
dmdcan |
|- ( ( ( ( p - 1 ) e. CC /\ ( p - 1 ) =/= 0 ) /\ ( p e. CC /\ p =/= 0 ) /\ 1 e. CC ) -> ( ( ( p - 1 ) / p ) x. ( 1 / ( p - 1 ) ) ) = ( 1 / p ) ) |
| 347 |
345 330 329 346
|
syl3anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( ( p - 1 ) / p ) x. ( 1 / ( p - 1 ) ) ) = ( 1 / p ) ) |
| 348 |
344 347
|
breqtrrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) <_ ( ( ( p - 1 ) / p ) x. ( 1 / ( p - 1 ) ) ) ) |
| 349 |
244
|
nnrecred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 / ( p - 1 ) ) e. RR ) |
| 350 |
243 349 246
|
ledivmuld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) <_ ( 1 / ( p - 1 ) ) <-> ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) <_ ( ( ( p - 1 ) / p ) x. ( 1 / ( p - 1 ) ) ) ) ) |
| 351 |
348 350
|
mpbird |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) <_ ( 1 / ( p - 1 ) ) ) |
| 352 |
247 349 237
|
lemul2d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) <_ ( 1 / ( p - 1 ) ) <-> ( ( log ` p ) x. ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) <_ ( ( log ` p ) x. ( 1 / ( p - 1 ) ) ) ) ) |
| 353 |
351 352
|
mpbid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) x. ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) <_ ( ( log ` p ) x. ( 1 / ( p - 1 ) ) ) ) |
| 354 |
244
|
nncnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( p - 1 ) e. CC ) |
| 355 |
244
|
nnne0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( p - 1 ) =/= 0 ) |
| 356 |
292 354 355
|
divrecd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) / ( p - 1 ) ) = ( ( log ` p ) x. ( 1 / ( p - 1 ) ) ) ) |
| 357 |
353 356
|
breqtrrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) x. ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) <_ ( ( log ` p ) / ( p - 1 ) ) ) |
| 358 |
224 248 130 341 357
|
letrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ ( ( log ` p ) / ( p - 1 ) ) ) |
| 359 |
129 358
|
sylan2 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ ( ( log ` p ) / ( p - 1 ) ) ) |
| 360 |
126 225 131 359
|
fsumle |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ sum_ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ( ( log ` p ) / ( p - 1 ) ) ) |
| 361 |
223 360
|
eqbrtrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) <_ sum_ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ( ( log ` p ) / ( p - 1 ) ) ) |
| 362 |
80
|
adantlr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. { q e. Prime | q || N } ) -> ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
| 363 |
237 245
|
rpdivcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) / ( p - 1 ) ) e. RR+ ) |
| 364 |
363
|
rpge0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 0 <_ ( ( log ` p ) / ( p - 1 ) ) ) |
| 365 |
70 364
|
sylan2 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. { q e. Prime | q || N } ) -> 0 <_ ( ( log ` p ) / ( p - 1 ) ) ) |
| 366 |
122 362 365 125
|
fsumless |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ( ( log ` p ) / ( p - 1 ) ) <_ sum_ p e. { q e. Prime | q || N } ( ( log ` p ) / ( p - 1 ) ) ) |
| 367 |
102 132 133 361 366
|
letrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) <_ sum_ p e. { q e. Prime | q || N } ( ( log ` p ) / ( p - 1 ) ) ) |
| 368 |
121 367
|
eqbrtrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) <_ sum_ p e. { q e. Prime | q || N } ( ( log ` p ) / ( p - 1 ) ) ) |
| 369 |
66 41 67 81 368
|
elo1d |
|- ( ph -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) e. O(1) ) |
| 370 |
|
o1sub |
|- ( ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) /\ ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) e. O(1) ) -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) e. O(1) ) |
| 371 |
65 369 370
|
sylancr |
|- ( ph -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) e. O(1) ) |
| 372 |
64 371
|
eqeltrrd |
|- ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) e. O(1) ) |