Step |
Hyp |
Ref |
Expression |
1 |
|
fsumo1.1 |
|
2 |
|
fsumo1.2 |
|
3 |
|
fsumo1.3 |
|
4 |
|
fsumo1.4 |
|
5 |
|
ssid |
|
6 |
|
sseq1 |
|
7 |
|
sumeq1 |
|
8 |
|
sum0 |
|
9 |
7 8
|
eqtrdi |
|
10 |
9
|
mpteq2dv |
|
11 |
10
|
eleq1d |
|
12 |
6 11
|
imbi12d |
|
13 |
12
|
imbi2d |
|
14 |
|
sseq1 |
|
15 |
|
sumeq1 |
|
16 |
15
|
mpteq2dv |
|
17 |
16
|
eleq1d |
|
18 |
14 17
|
imbi12d |
|
19 |
18
|
imbi2d |
|
20 |
|
sseq1 |
|
21 |
|
sumeq1 |
|
22 |
21
|
mpteq2dv |
|
23 |
22
|
eleq1d |
|
24 |
20 23
|
imbi12d |
|
25 |
24
|
imbi2d |
|
26 |
|
sseq1 |
|
27 |
|
sumeq1 |
|
28 |
27
|
mpteq2dv |
|
29 |
28
|
eleq1d |
|
30 |
26 29
|
imbi12d |
|
31 |
30
|
imbi2d |
|
32 |
|
0cn |
|
33 |
|
o1const |
|
34 |
1 32 33
|
sylancl |
|
35 |
34
|
a1d |
|
36 |
|
ssun1 |
|
37 |
|
sstr |
|
38 |
36 37
|
mpan |
|
39 |
38
|
imim1i |
|
40 |
|
simprl |
|
41 |
|
disjsn |
|
42 |
40 41
|
sylibr |
|
43 |
42
|
adantr |
|
44 |
|
eqidd |
|
45 |
2
|
adantr |
|
46 |
|
simprr |
|
47 |
45 46
|
ssfid |
|
48 |
47
|
adantr |
|
49 |
46
|
sselda |
|
50 |
49
|
adantlr |
|
51 |
3
|
anass1rs |
|
52 |
51 4
|
o1mptrcl |
|
53 |
52
|
an32s |
|
54 |
53
|
adantllr |
|
55 |
50 54
|
syldan |
|
56 |
43 44 48 55
|
fsumsplit |
|
57 |
|
nfcv |
|
58 |
|
nfcsb1v |
|
59 |
|
csbeq1a |
|
60 |
57 58 59
|
cbvsumi |
|
61 |
46
|
unssbd |
|
62 |
|
vex |
|
63 |
62
|
snss |
|
64 |
61 63
|
sylibr |
|
65 |
64
|
adantr |
|
66 |
54
|
ralrimiva |
|
67 |
|
nfcsb1v |
|
68 |
67
|
nfel1 |
|
69 |
|
csbeq1a |
|
70 |
69
|
eleq1d |
|
71 |
68 70
|
rspc |
|
72 |
65 66 71
|
sylc |
|
73 |
|
csbeq1 |
|
74 |
73
|
sumsn |
|
75 |
65 72 74
|
syl2anc |
|
76 |
60 75
|
eqtrid |
|
77 |
76
|
oveq2d |
|
78 |
56 77
|
eqtrd |
|
79 |
78
|
mpteq2dva |
|
80 |
1
|
adantr |
|
81 |
|
reex |
|
82 |
81
|
ssex |
|
83 |
80 82
|
syl |
|
84 |
|
sumex |
|
85 |
84
|
a1i |
|
86 |
|
eqidd |
|
87 |
|
eqidd |
|
88 |
83 85 72 86 87
|
offval2 |
|
89 |
79 88
|
eqtr4d |
|
90 |
89
|
adantr |
|
91 |
|
id |
|
92 |
4
|
ralrimiva |
|
93 |
92
|
adantr |
|
94 |
|
nfcv |
|
95 |
94 67
|
nfmpt |
|
96 |
95
|
nfel1 |
|
97 |
69
|
mpteq2dv |
|
98 |
97
|
eleq1d |
|
99 |
96 98
|
rspc |
|
100 |
64 93 99
|
sylc |
|
101 |
|
o1add |
|
102 |
91 100 101
|
syl2anr |
|
103 |
90 102
|
eqeltrd |
|
104 |
103
|
ex |
|
105 |
104
|
expr |
|
106 |
105
|
a2d |
|
107 |
39 106
|
syl5 |
|
108 |
107
|
expcom |
|
109 |
108
|
a2d |
|
110 |
109
|
adantl |
|
111 |
13 19 25 31 35 110
|
findcard2s |
|
112 |
2 111
|
mpcom |
|
113 |
5 112
|
mpi |
|