Metamath Proof Explorer


Theorem ruclem9

Description: Lemma for ruc . The first components of the G sequence are increasing, and the second components are decreasing. (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1 φF:
ruc.2 φD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
ruc.4 C=001F
ruc.5 G=seq0DC
ruclem9.6 φM0
ruclem9.7 φNM
Assertion ruclem9 φ1stGM1stGN2ndGN2ndGM

Proof

Step Hyp Ref Expression
1 ruc.1 φF:
2 ruc.2 φD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
3 ruc.4 C=001F
4 ruc.5 G=seq0DC
5 ruclem9.6 φM0
6 ruclem9.7 φNM
7 2fveq3 k=M1stGk=1stGM
8 7 breq2d k=M1stGM1stGk1stGM1stGM
9 2fveq3 k=M2ndGk=2ndGM
10 9 breq1d k=M2ndGk2ndGM2ndGM2ndGM
11 8 10 anbi12d k=M1stGM1stGk2ndGk2ndGM1stGM1stGM2ndGM2ndGM
12 11 imbi2d k=Mφ1stGM1stGk2ndGk2ndGMφ1stGM1stGM2ndGM2ndGM
13 2fveq3 k=n1stGk=1stGn
14 13 breq2d k=n1stGM1stGk1stGM1stGn
15 2fveq3 k=n2ndGk=2ndGn
16 15 breq1d k=n2ndGk2ndGM2ndGn2ndGM
17 14 16 anbi12d k=n1stGM1stGk2ndGk2ndGM1stGM1stGn2ndGn2ndGM
18 17 imbi2d k=nφ1stGM1stGk2ndGk2ndGMφ1stGM1stGn2ndGn2ndGM
19 2fveq3 k=n+11stGk=1stGn+1
20 19 breq2d k=n+11stGM1stGk1stGM1stGn+1
21 2fveq3 k=n+12ndGk=2ndGn+1
22 21 breq1d k=n+12ndGk2ndGM2ndGn+12ndGM
23 20 22 anbi12d k=n+11stGM1stGk2ndGk2ndGM1stGM1stGn+12ndGn+12ndGM
24 23 imbi2d k=n+1φ1stGM1stGk2ndGk2ndGMφ1stGM1stGn+12ndGn+12ndGM
25 2fveq3 k=N1stGk=1stGN
26 25 breq2d k=N1stGM1stGk1stGM1stGN
27 2fveq3 k=N2ndGk=2ndGN
28 27 breq1d k=N2ndGk2ndGM2ndGN2ndGM
29 26 28 anbi12d k=N1stGM1stGk2ndGk2ndGM1stGM1stGN2ndGN2ndGM
30 29 imbi2d k=Nφ1stGM1stGk2ndGk2ndGMφ1stGM1stGN2ndGN2ndGM
31 1 2 3 4 ruclem6 φG:02
32 31 5 ffvelcdmd φGM2
33 xp1st GM21stGM
34 32 33 syl φ1stGM
35 34 leidd φ1stGM1stGM
36 xp2nd GM22ndGM
37 32 36 syl φ2ndGM
38 37 leidd φ2ndGM2ndGM
39 35 38 jca φ1stGM1stGM2ndGM2ndGM
40 1 adantr φnMF:
41 2 adantr φnMD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
42 31 adantr φnMG:02
43 eluznn0 M0nMn0
44 5 43 sylan φnMn0
45 42 44 ffvelcdmd φnMGn2
46 xp1st Gn21stGn
47 45 46 syl φnM1stGn
48 xp2nd Gn22ndGn
49 45 48 syl φnM2ndGn
50 nn0p1nn n0n+1
51 44 50 syl φnMn+1
52 40 51 ffvelcdmd φnMFn+1
53 eqid 1st1stGn2ndGnDFn+1=1st1stGn2ndGnDFn+1
54 eqid 2nd1stGn2ndGnDFn+1=2nd1stGn2ndGnDFn+1
55 1 2 3 4 ruclem8 φn01stGn<2ndGn
56 44 55 syldan φnM1stGn<2ndGn
57 40 41 47 49 52 53 54 56 ruclem2 φnM1stGn1st1stGn2ndGnDFn+11st1stGn2ndGnDFn+1<2nd1stGn2ndGnDFn+12nd1stGn2ndGnDFn+12ndGn
58 57 simp1d φnM1stGn1st1stGn2ndGnDFn+1
59 1 2 3 4 ruclem7 φn0Gn+1=GnDFn+1
60 44 59 syldan φnMGn+1=GnDFn+1
61 1st2nd2 Gn2Gn=1stGn2ndGn
62 45 61 syl φnMGn=1stGn2ndGn
63 62 oveq1d φnMGnDFn+1=1stGn2ndGnDFn+1
64 60 63 eqtrd φnMGn+1=1stGn2ndGnDFn+1
65 64 fveq2d φnM1stGn+1=1st1stGn2ndGnDFn+1
66 58 65 breqtrrd φnM1stGn1stGn+1
67 34 adantr φnM1stGM
68 peano2nn0 n0n+10
69 44 68 syl φnMn+10
70 42 69 ffvelcdmd φnMGn+12
71 xp1st Gn+121stGn+1
72 70 71 syl φnM1stGn+1
73 letr 1stGM1stGn1stGn+11stGM1stGn1stGn1stGn+11stGM1stGn+1
74 67 47 72 73 syl3anc φnM1stGM1stGn1stGn1stGn+11stGM1stGn+1
75 66 74 mpan2d φnM1stGM1stGn1stGM1stGn+1
76 64 fveq2d φnM2ndGn+1=2nd1stGn2ndGnDFn+1
77 57 simp3d φnM2nd1stGn2ndGnDFn+12ndGn
78 76 77 eqbrtrd φnM2ndGn+12ndGn
79 xp2nd Gn+122ndGn+1
80 70 79 syl φnM2ndGn+1
81 37 adantr φnM2ndGM
82 letr 2ndGn+12ndGn2ndGM2ndGn+12ndGn2ndGn2ndGM2ndGn+12ndGM
83 80 49 81 82 syl3anc φnM2ndGn+12ndGn2ndGn2ndGM2ndGn+12ndGM
84 78 83 mpand φnM2ndGn2ndGM2ndGn+12ndGM
85 75 84 anim12d φnM1stGM1stGn2ndGn2ndGM1stGM1stGn+12ndGn+12ndGM
86 85 expcom nMφ1stGM1stGn2ndGn2ndGM1stGM1stGn+12ndGn+12ndGM
87 86 a2d nMφ1stGM1stGn2ndGn2ndGMφ1stGM1stGn+12ndGn+12ndGM
88 12 18 24 30 39 87 uzind4i NMφ1stGM1stGN2ndGN2ndGM
89 6 88 mpcom φ1stGM1stGN2ndGN2ndGM