| Step |
Hyp |
Ref |
Expression |
| 1 |
|
satfv0fv.s |
|
| 2 |
|
satfv0fun |
|
| 3 |
1
|
fveq1i |
|
| 4 |
3
|
funeqi |
|
| 5 |
2 4
|
sylibr |
|
| 6 |
5
|
3adant3 |
|
| 7 |
|
fmla0 |
|
| 8 |
7
|
eleq2i |
|
| 9 |
|
eqeq1 |
|
| 10 |
9
|
2rexbidv |
|
| 11 |
10
|
elrab |
|
| 12 |
8 11
|
bitri |
|
| 13 |
|
simpr |
|
| 14 |
|
goel |
|
| 15 |
14
|
eqeq2d |
|
| 16 |
|
2fveq3 |
|
| 17 |
|
0ex |
|
| 18 |
|
opex |
|
| 19 |
17 18
|
op2nd |
|
| 20 |
19
|
fveq2i |
|
| 21 |
|
vex |
|
| 22 |
|
vex |
|
| 23 |
21 22
|
op1st |
|
| 24 |
20 23
|
eqtri |
|
| 25 |
16 24
|
eqtrdi |
|
| 26 |
25
|
fveq2d |
|
| 27 |
|
2fveq3 |
|
| 28 |
19
|
fveq2i |
|
| 29 |
21 22
|
op2nd |
|
| 30 |
28 29
|
eqtri |
|
| 31 |
27 30
|
eqtrdi |
|
| 32 |
31
|
fveq2d |
|
| 33 |
26 32
|
breq12d |
|
| 34 |
15 33
|
biimtrdi |
|
| 35 |
34
|
imp |
|
| 36 |
35
|
rabbidv |
|
| 37 |
13 36
|
jca |
|
| 38 |
37
|
ex |
|
| 39 |
38
|
reximdva |
|
| 40 |
39
|
reximia |
|
| 41 |
12 40
|
simplbiim |
|
| 42 |
41
|
3ad2ant3 |
|
| 43 |
|
simp3 |
|
| 44 |
|
ovex |
|
| 45 |
44
|
rabex |
|
| 46 |
|
eqeq1 |
|
| 47 |
9 46
|
bi2anan9 |
|
| 48 |
47
|
2rexbidv |
|
| 49 |
48
|
opelopabga |
|
| 50 |
43 45 49
|
sylancl |
|
| 51 |
42 50
|
mpbird |
|
| 52 |
1
|
satfv0 |
|
| 53 |
52
|
eleq2d |
|
| 54 |
53
|
3adant3 |
|
| 55 |
51 54
|
mpbird |
|
| 56 |
|
funopfv |
|
| 57 |
6 55 56
|
sylc |
|