Metamath Proof Explorer


Theorem scmatsgrp1

Description: The set of scalar matrices is a subgroup of the group/ring of diagonal matrices. (Contributed by AV, 21-Aug-2019)

Ref Expression
Hypotheses scmatid.a A=NMatR
scmatid.b B=BaseA
scmatid.e E=BaseR
scmatid.0 0˙=0R
scmatid.s S=NScMatR
scmatsgrp1.d D=NDMatR
scmatsgrp1.c C=A𝑠D
Assertion scmatsgrp1 NFinRRingSSubGrpC

Proof

Step Hyp Ref Expression
1 scmatid.a A=NMatR
2 scmatid.b B=BaseA
3 scmatid.e E=BaseR
4 scmatid.0 0˙=0R
5 scmatid.s S=NScMatR
6 scmatsgrp1.d D=NDMatR
7 scmatsgrp1.c C=A𝑠D
8 1 2 3 4 5 6 scmatdmat NFinRRingxSxD
9 8 ssrdv NFinRRingSD
10 1 2 4 6 dmatsgrp RRingNFinDSubGrpA
11 10 ancoms NFinRRingDSubGrpA
12 7 subgbas DSubGrpAD=BaseC
13 12 eqcomd DSubGrpABaseC=D
14 11 13 syl NFinRRingBaseC=D
15 9 14 sseqtrrd NFinRRingSBaseC
16 1 2 3 4 5 scmatid NFinRRing1AS
17 16 ne0d NFinRRingS
18 11 adantr NFinRRingxSySDSubGrpA
19 8 com12 xSNFinRRingxD
20 19 adantr xSySNFinRRingxD
21 20 impcom NFinRRingxSySxD
22 1 2 3 4 5 6 scmatdmat NFinRRingySyD
23 22 a1d NFinRRingxSySyD
24 23 imp32 NFinRRingxSySyD
25 eqid -A=-A
26 eqid -C=-C
27 25 7 26 subgsub DSubGrpAxDyDx-Ay=x-Cy
28 27 eqcomd DSubGrpAxDyDx-Cy=x-Ay
29 18 21 24 28 syl3anc NFinRRingxSySx-Cy=x-Ay
30 1 2 3 4 5 scmatsubcl NFinRRingxSySx-AyS
31 29 30 eqeltrd NFinRRingxSySx-CyS
32 31 ralrimivva NFinRRingxSySx-CyS
33 1 2 4 6 dmatsrng RRingNFinDSubRingA
34 33 ancoms NFinRRingDSubRingA
35 7 subrgring DSubRingACRing
36 34 35 syl NFinRRingCRing
37 ringgrp CRingCGrp
38 eqid BaseC=BaseC
39 38 26 issubg4 CGrpSSubGrpCSBaseCSxSySx-CyS
40 36 37 39 3syl NFinRRingSSubGrpCSBaseCSxSySx-CyS
41 15 17 32 40 mpbir3and NFinRRingSSubGrpC