Description: The set of scalar matrices is a subgroup of the group/ring of diagonal matrices. (Contributed by AV, 21-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | scmatid.a | |
|
scmatid.b | |
||
scmatid.e | |
||
scmatid.0 | |
||
scmatid.s | |
||
scmatsgrp1.d | |
||
scmatsgrp1.c | |
||
Assertion | scmatsgrp1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatid.a | |
|
2 | scmatid.b | |
|
3 | scmatid.e | |
|
4 | scmatid.0 | |
|
5 | scmatid.s | |
|
6 | scmatsgrp1.d | |
|
7 | scmatsgrp1.c | |
|
8 | 1 2 3 4 5 6 | scmatdmat | |
9 | 8 | ssrdv | |
10 | 1 2 4 6 | dmatsgrp | |
11 | 10 | ancoms | |
12 | 7 | subgbas | |
13 | 12 | eqcomd | |
14 | 11 13 | syl | |
15 | 9 14 | sseqtrrd | |
16 | 1 2 3 4 5 | scmatid | |
17 | 16 | ne0d | |
18 | 11 | adantr | |
19 | 8 | com12 | |
20 | 19 | adantr | |
21 | 20 | impcom | |
22 | 1 2 3 4 5 6 | scmatdmat | |
23 | 22 | a1d | |
24 | 23 | imp32 | |
25 | eqid | |
|
26 | eqid | |
|
27 | 25 7 26 | subgsub | |
28 | 27 | eqcomd | |
29 | 18 21 24 28 | syl3anc | |
30 | 1 2 3 4 5 | scmatsubcl | |
31 | 29 30 | eqeltrd | |
32 | 31 | ralrimivva | |
33 | 1 2 4 6 | dmatsrng | |
34 | 33 | ancoms | |
35 | 7 | subrgring | |
36 | 34 35 | syl | |
37 | ringgrp | |
|
38 | eqid | |
|
39 | 38 26 | issubg4 | |
40 | 36 37 39 | 3syl | |
41 | 15 17 32 40 | mpbir3and | |