Step |
Hyp |
Ref |
Expression |
1 |
|
scmatid.a |
|
2 |
|
scmatid.b |
|
3 |
|
scmatid.e |
|
4 |
|
scmatid.0 |
|
5 |
|
scmatid.s |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
3 1 2 6 7 5
|
scmatscmid |
|
9 |
8
|
3expa |
|
10 |
9
|
adantrr |
|
11 |
3 1 2 6 7 5
|
scmatscmid |
|
12 |
11
|
3expia |
|
13 |
|
oveq12 |
|
14 |
13
|
adantl |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
1
|
matlmod |
|
20 |
19
|
ad2antrr |
|
21 |
1
|
matsca2 |
|
22 |
21
|
fveq2d |
|
23 |
3 22
|
eqtrid |
|
24 |
23
|
eleq2d |
|
25 |
24
|
biimpd |
|
26 |
25
|
adantr |
|
27 |
26
|
imp |
|
28 |
23
|
eleq2d |
|
29 |
28
|
biimpa |
|
30 |
29
|
adantr |
|
31 |
1
|
matring |
|
32 |
2 6
|
ringidcl |
|
33 |
31 32
|
syl |
|
34 |
33
|
ad2antrr |
|
35 |
2 7 15 16 17 18 20 27 30 34
|
lmodsubdir |
|
36 |
35
|
eqcomd |
|
37 |
|
simpll |
|
38 |
21
|
eqcomd |
|
39 |
38
|
ad2antrr |
|
40 |
39
|
fveq2d |
|
41 |
40
|
oveqd |
|
42 |
|
ringgrp |
|
43 |
42
|
adantl |
|
44 |
43
|
ad2antrr |
|
45 |
|
simpr |
|
46 |
|
simplr |
|
47 |
|
eqid |
|
48 |
3 47
|
grpsubcl |
|
49 |
44 45 46 48
|
syl3anc |
|
50 |
41 49
|
eqeltrd |
|
51 |
3 1 2 7
|
matvscl |
|
52 |
37 50 34 51
|
syl12anc |
|
53 |
|
oveq1 |
|
54 |
53
|
eqeq2d |
|
55 |
54
|
adantl |
|
56 |
|
eqidd |
|
57 |
50 55 56
|
rspcedvd |
|
58 |
3 1 2 6 7 5
|
scmatel |
|
59 |
58
|
ad2antrr |
|
60 |
52 57 59
|
mpbir2and |
|
61 |
36 60
|
eqeltrd |
|
62 |
61
|
adantr |
|
63 |
14 62
|
eqeltrd |
|
64 |
63
|
exp32 |
|
65 |
64
|
rexlimdva |
|
66 |
65
|
com23 |
|
67 |
66
|
rexlimdva |
|
68 |
12 67
|
syldc |
|
69 |
68
|
adantl |
|
70 |
69
|
impcom |
|
71 |
10 70
|
mpd |
|