Metamath Proof Explorer


Theorem scmsuppss

Description: The support of a mapping of a scalar multiplication with a function of scalars is a subset of the support of the function of scalars. (Contributed by AV, 5-Apr-2019)

Ref Expression
Hypotheses scmsuppss.s S=ScalarM
scmsuppss.r R=BaseS
Assertion scmsuppss MLModV𝒫BaseMARVvVAvMvsupp0MAsupp0S

Proof

Step Hyp Ref Expression
1 scmsuppss.s S=ScalarM
2 scmsuppss.r R=BaseS
3 elmapi ARVA:VR
4 fdm A:VRdomA=V
5 eqidd domA=VA:VRV𝒫BaseMMLModxVvVAvMv=vVAvMv
6 fveq2 v=xAv=Ax
7 id v=xv=x
8 6 7 oveq12d v=xAvMv=AxMx
9 8 adantl domA=VA:VRV𝒫BaseMMLModxVv=xAvMv=AxMx
10 simpr domA=VA:VRV𝒫BaseMMLModxVxV
11 ovex AxMxV
12 11 a1i domA=VA:VRV𝒫BaseMMLModxVAxMxV
13 5 9 10 12 fvmptd domA=VA:VRV𝒫BaseMMLModxVvVAvMvx=AxMx
14 13 neeq1d domA=VA:VRV𝒫BaseMMLModxVvVAvMvx0MAxMx0M
15 oveq1 Ax=0SAxMx=0SMx
16 simplrr domA=VA:VRV𝒫BaseMMLModxVMLMod
17 elelpwi xVV𝒫BaseMxBaseM
18 17 expcom V𝒫BaseMxVxBaseM
19 18 adantr V𝒫BaseMMLModxVxBaseM
20 19 adantl domA=VA:VRV𝒫BaseMMLModxVxBaseM
21 20 imp domA=VA:VRV𝒫BaseMMLModxVxBaseM
22 eqid BaseM=BaseM
23 eqid M=M
24 eqid 0S=0S
25 eqid 0M=0M
26 22 1 23 24 25 lmod0vs MLModxBaseM0SMx=0M
27 16 21 26 syl2anc domA=VA:VRV𝒫BaseMMLModxV0SMx=0M
28 15 27 sylan9eqr domA=VA:VRV𝒫BaseMMLModxVAx=0SAxMx=0M
29 28 ex domA=VA:VRV𝒫BaseMMLModxVAx=0SAxMx=0M
30 29 necon3d domA=VA:VRV𝒫BaseMMLModxVAxMx0MAx0S
31 14 30 sylbid domA=VA:VRV𝒫BaseMMLModxVvVAvMvx0MAx0S
32 31 ss2rabdv domA=VA:VRV𝒫BaseMMLModxV|vVAvMvx0MxV|Ax0S
33 ovex AvMvV
34 eqid vVAvMv=vVAvMv
35 33 34 dmmpti domvVAvMv=V
36 rabeq domvVAvMv=VxdomvVAvMv|vVAvMvx0M=xV|vVAvMvx0M
37 35 36 mp1i domA=VxdomvVAvMv|vVAvMvx0M=xV|vVAvMvx0M
38 rabeq domA=VxdomA|Ax0S=xV|Ax0S
39 37 38 sseq12d domA=VxdomvVAvMv|vVAvMvx0MxdomA|Ax0SxV|vVAvMvx0MxV|Ax0S
40 39 adantr domA=VA:VRxdomvVAvMv|vVAvMvx0MxdomA|Ax0SxV|vVAvMvx0MxV|Ax0S
41 40 adantr domA=VA:VRV𝒫BaseMMLModxdomvVAvMv|vVAvMvx0MxdomA|Ax0SxV|vVAvMvx0MxV|Ax0S
42 32 41 mpbird domA=VA:VRV𝒫BaseMMLModxdomvVAvMv|vVAvMvx0MxdomA|Ax0S
43 42 exp43 domA=VA:VRV𝒫BaseMMLModxdomvVAvMv|vVAvMvx0MxdomA|Ax0S
44 4 43 mpcom A:VRV𝒫BaseMMLModxdomvVAvMv|vVAvMvx0MxdomA|Ax0S
45 3 44 syl ARVV𝒫BaseMMLModxdomvVAvMv|vVAvMvx0MxdomA|Ax0S
46 45 com13 MLModV𝒫BaseMARVxdomvVAvMv|vVAvMvx0MxdomA|Ax0S
47 46 3imp MLModV𝒫BaseMARVxdomvVAvMv|vVAvMvx0MxdomA|Ax0S
48 funmpt FunvVAvMv
49 48 a1i MLModV𝒫BaseMARVFunvVAvMv
50 mptexg V𝒫BaseMvVAvMvV
51 50 3ad2ant2 MLModV𝒫BaseMARVvVAvMvV
52 fvexd MLModV𝒫BaseMARV0MV
53 suppval1 FunvVAvMvvVAvMvV0MVvVAvMvsupp0M=xdomvVAvMv|vVAvMvx0M
54 49 51 52 53 syl3anc MLModV𝒫BaseMARVvVAvMvsupp0M=xdomvVAvMv|vVAvMvx0M
55 elmapfun ARVFunA
56 55 3ad2ant3 MLModV𝒫BaseMARVFunA
57 simp3 MLModV𝒫BaseMARVARV
58 fvexd MLModV𝒫BaseMARV0SV
59 suppval1 FunAARV0SVAsupp0S=xdomA|Ax0S
60 56 57 58 59 syl3anc MLModV𝒫BaseMARVAsupp0S=xdomA|Ax0S
61 47 54 60 3sstr4d MLModV𝒫BaseMARVvVAvMvsupp0MAsupp0S