| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reex |
|
| 2 |
|
rpssre |
|
| 3 |
1 2
|
ssexi |
|
| 4 |
3
|
a1i |
|
| 5 |
|
ovexd |
|
| 6 |
|
ovexd |
|
| 7 |
|
eqidd |
|
| 8 |
|
eqidd |
|
| 9 |
4 5 6 7 8
|
offval2 |
|
| 10 |
9
|
mptru |
|
| 11 |
|
fzfid |
|
| 12 |
|
elfznn |
|
| 13 |
12
|
adantl |
|
| 14 |
|
vmacl |
|
| 15 |
13 14
|
syl |
|
| 16 |
15
|
recnd |
|
| 17 |
13
|
nnrpd |
|
| 18 |
|
relogcl |
|
| 19 |
17 18
|
syl |
|
| 20 |
19
|
recnd |
|
| 21 |
|
rpre |
|
| 22 |
|
nndivre |
|
| 23 |
21 12 22
|
syl2an |
|
| 24 |
|
chpcl |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
recnd |
|
| 27 |
20 26
|
addcld |
|
| 28 |
16 27
|
mulcld |
|
| 29 |
11 28
|
fsumcl |
|
| 30 |
|
rpcn |
|
| 31 |
|
rpne0 |
|
| 32 |
29 30 31
|
divcld |
|
| 33 |
|
2cn |
|
| 34 |
|
relogcl |
|
| 35 |
34
|
recnd |
|
| 36 |
|
mulcl |
|
| 37 |
33 35 36
|
sylancr |
|
| 38 |
16 20
|
mulcld |
|
| 39 |
11 38
|
fsumcl |
|
| 40 |
|
chpcl |
|
| 41 |
21 40
|
syl |
|
| 42 |
41
|
recnd |
|
| 43 |
42 35
|
mulcld |
|
| 44 |
39 43
|
subcld |
|
| 45 |
44 30 31
|
divcld |
|
| 46 |
32 37 45
|
sub32d |
|
| 47 |
|
rpcnne0 |
|
| 48 |
|
divsubdir |
|
| 49 |
29 44 47 48
|
syl3anc |
|
| 50 |
16 20 26
|
adddid |
|
| 51 |
50
|
sumeq2dv |
|
| 52 |
16 26
|
mulcld |
|
| 53 |
11 38 52
|
fsumadd |
|
| 54 |
51 53
|
eqtrd |
|
| 55 |
54
|
oveq1d |
|
| 56 |
11 52
|
fsumcl |
|
| 57 |
39 56 43
|
pnncand |
|
| 58 |
56 43
|
addcomd |
|
| 59 |
55 57 58
|
3eqtrd |
|
| 60 |
59
|
oveq1d |
|
| 61 |
49 60
|
eqtr3d |
|
| 62 |
61
|
oveq1d |
|
| 63 |
46 62
|
eqtrd |
|
| 64 |
63
|
mpteq2ia |
|
| 65 |
10 64
|
eqtri |
|
| 66 |
|
selberg |
|
| 67 |
|
selberg2lem |
|
| 68 |
|
o1sub |
|
| 69 |
66 67 68
|
mp2an |
|
| 70 |
65 69
|
eqeltrri |
|