Metamath Proof Explorer


Theorem selberg2

Description: Selberg's symmetry formula, using the second Chebyshev function. Equation 10.4.14 of Shapiro, p. 420. (Contributed by Mario Carneiro, 23-May-2016)

Ref Expression
Assertion selberg2 x+ψxlogx+n=1xΛnψxnx2logx𝑂1

Proof

Step Hyp Ref Expression
1 reex V
2 rpssre +
3 1 2 ssexi +V
4 3 a1i +V
5 ovexd x+n=1xΛnlogn+ψxnx2logxV
6 ovexd x+n=1xΛnlognψxlogxxV
7 eqidd x+n=1xΛnlogn+ψxnx2logx=x+n=1xΛnlogn+ψxnx2logx
8 eqidd x+n=1xΛnlognψxlogxx=x+n=1xΛnlognψxlogxx
9 4 5 6 7 8 offval2 x+n=1xΛnlogn+ψxnx2logxfx+n=1xΛnlognψxlogxx=x+n=1xΛnlogn+ψxnx-2logx-n=1xΛnlognψxlogxx
10 9 mptru x+n=1xΛnlogn+ψxnx2logxfx+n=1xΛnlognψxlogxx=x+n=1xΛnlogn+ψxnx-2logx-n=1xΛnlognψxlogxx
11 fzfid x+1xFin
12 elfznn n1xn
13 12 adantl x+n1xn
14 vmacl nΛn
15 13 14 syl x+n1xΛn
16 15 recnd x+n1xΛn
17 13 nnrpd x+n1xn+
18 relogcl n+logn
19 17 18 syl x+n1xlogn
20 19 recnd x+n1xlogn
21 rpre x+x
22 nndivre xnxn
23 21 12 22 syl2an x+n1xxn
24 chpcl xnψxn
25 23 24 syl x+n1xψxn
26 25 recnd x+n1xψxn
27 20 26 addcld x+n1xlogn+ψxn
28 16 27 mulcld x+n1xΛnlogn+ψxn
29 11 28 fsumcl x+n=1xΛnlogn+ψxn
30 rpcn x+x
31 rpne0 x+x0
32 29 30 31 divcld x+n=1xΛnlogn+ψxnx
33 2cn 2
34 relogcl x+logx
35 34 recnd x+logx
36 mulcl 2logx2logx
37 33 35 36 sylancr x+2logx
38 16 20 mulcld x+n1xΛnlogn
39 11 38 fsumcl x+n=1xΛnlogn
40 chpcl xψx
41 21 40 syl x+ψx
42 41 recnd x+ψx
43 42 35 mulcld x+ψxlogx
44 39 43 subcld x+n=1xΛnlognψxlogx
45 44 30 31 divcld x+n=1xΛnlognψxlogxx
46 32 37 45 sub32d x+n=1xΛnlogn+ψxnx-2logx-n=1xΛnlognψxlogxx=n=1xΛnlogn+ψxnx-n=1xΛnlognψxlogxx-2logx
47 rpcnne0 x+xx0
48 divsubdir n=1xΛnlogn+ψxnn=1xΛnlognψxlogxxx0n=1xΛnlogn+ψxnn=1xΛnlognψxlogxx=n=1xΛnlogn+ψxnxn=1xΛnlognψxlogxx
49 29 44 47 48 syl3anc x+n=1xΛnlogn+ψxnn=1xΛnlognψxlogxx=n=1xΛnlogn+ψxnxn=1xΛnlognψxlogxx
50 16 20 26 adddid x+n1xΛnlogn+ψxn=Λnlogn+Λnψxn
51 50 sumeq2dv x+n=1xΛnlogn+ψxn=n=1xΛnlogn+Λnψxn
52 16 26 mulcld x+n1xΛnψxn
53 11 38 52 fsumadd x+n=1xΛnlogn+Λnψxn=n=1xΛnlogn+n=1xΛnψxn
54 51 53 eqtrd x+n=1xΛnlogn+ψxn=n=1xΛnlogn+n=1xΛnψxn
55 54 oveq1d x+n=1xΛnlogn+ψxnn=1xΛnlognψxlogx=n=1xΛnlogn+n=1xΛnψxn-n=1xΛnlognψxlogx
56 11 52 fsumcl x+n=1xΛnψxn
57 39 56 43 pnncand x+n=1xΛnlogn+n=1xΛnψxn-n=1xΛnlognψxlogx=n=1xΛnψxn+ψxlogx
58 56 43 addcomd x+n=1xΛnψxn+ψxlogx=ψxlogx+n=1xΛnψxn
59 55 57 58 3eqtrd x+n=1xΛnlogn+ψxnn=1xΛnlognψxlogx=ψxlogx+n=1xΛnψxn
60 59 oveq1d x+n=1xΛnlogn+ψxnn=1xΛnlognψxlogxx=ψxlogx+n=1xΛnψxnx
61 49 60 eqtr3d x+n=1xΛnlogn+ψxnxn=1xΛnlognψxlogxx=ψxlogx+n=1xΛnψxnx
62 61 oveq1d x+n=1xΛnlogn+ψxnx-n=1xΛnlognψxlogxx-2logx=ψxlogx+n=1xΛnψxnx2logx
63 46 62 eqtrd x+n=1xΛnlogn+ψxnx-2logx-n=1xΛnlognψxlogxx=ψxlogx+n=1xΛnψxnx2logx
64 63 mpteq2ia x+n=1xΛnlogn+ψxnx-2logx-n=1xΛnlognψxlogxx=x+ψxlogx+n=1xΛnψxnx2logx
65 10 64 eqtri x+n=1xΛnlogn+ψxnx2logxfx+n=1xΛnlognψxlogxx=x+ψxlogx+n=1xΛnψxnx2logx
66 selberg x+n=1xΛnlogn+ψxnx2logx𝑂1
67 selberg2lem x+n=1xΛnlognψxlogxx𝑂1
68 o1sub x+n=1xΛnlogn+ψxnx2logx𝑂1x+n=1xΛnlognψxlogxx𝑂1x+n=1xΛnlogn+ψxnx2logxfx+n=1xΛnlognψxlogxx𝑂1
69 66 67 68 mp2an x+n=1xΛnlogn+ψxnx2logxfx+n=1xΛnlognψxlogxx𝑂1
70 65 69 eqeltrri x+ψxlogx+n=1xΛnψxnx2logx𝑂1