Metamath Proof Explorer


Theorem seqhomo

Description: Apply a homomorphism to a sequence. (Contributed by Mario Carneiro, 28-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqhomo.1 φxSySx+˙yS
seqhomo.2 φxMNFxS
seqhomo.3 φNM
seqhomo.4 φxSySHx+˙y=HxQHy
seqhomo.5 φxMNHFx=Gx
Assertion seqhomo φHseqM+˙FN=seqMQGN

Proof

Step Hyp Ref Expression
1 seqhomo.1 φxSySx+˙yS
2 seqhomo.2 φxMNFxS
3 seqhomo.3 φNM
4 seqhomo.4 φxSySHx+˙y=HxQHy
5 seqhomo.5 φxMNHFx=Gx
6 eluzfz2 NMNMN
7 3 6 syl φNMN
8 eleq1 x=MxMNMMN
9 2fveq3 x=MHseqM+˙Fx=HseqM+˙FM
10 fveq2 x=MseqMQGx=seqMQGM
11 9 10 eqeq12d x=MHseqM+˙Fx=seqMQGxHseqM+˙FM=seqMQGM
12 8 11 imbi12d x=MxMNHseqM+˙Fx=seqMQGxMMNHseqM+˙FM=seqMQGM
13 12 imbi2d x=MφxMNHseqM+˙Fx=seqMQGxφMMNHseqM+˙FM=seqMQGM
14 eleq1 x=nxMNnMN
15 2fveq3 x=nHseqM+˙Fx=HseqM+˙Fn
16 fveq2 x=nseqMQGx=seqMQGn
17 15 16 eqeq12d x=nHseqM+˙Fx=seqMQGxHseqM+˙Fn=seqMQGn
18 14 17 imbi12d x=nxMNHseqM+˙Fx=seqMQGxnMNHseqM+˙Fn=seqMQGn
19 18 imbi2d x=nφxMNHseqM+˙Fx=seqMQGxφnMNHseqM+˙Fn=seqMQGn
20 eleq1 x=n+1xMNn+1MN
21 2fveq3 x=n+1HseqM+˙Fx=HseqM+˙Fn+1
22 fveq2 x=n+1seqMQGx=seqMQGn+1
23 21 22 eqeq12d x=n+1HseqM+˙Fx=seqMQGxHseqM+˙Fn+1=seqMQGn+1
24 20 23 imbi12d x=n+1xMNHseqM+˙Fx=seqMQGxn+1MNHseqM+˙Fn+1=seqMQGn+1
25 24 imbi2d x=n+1φxMNHseqM+˙Fx=seqMQGxφn+1MNHseqM+˙Fn+1=seqMQGn+1
26 eleq1 x=NxMNNMN
27 2fveq3 x=NHseqM+˙Fx=HseqM+˙FN
28 fveq2 x=NseqMQGx=seqMQGN
29 27 28 eqeq12d x=NHseqM+˙Fx=seqMQGxHseqM+˙FN=seqMQGN
30 26 29 imbi12d x=NxMNHseqM+˙Fx=seqMQGxNMNHseqM+˙FN=seqMQGN
31 30 imbi2d x=NφxMNHseqM+˙Fx=seqMQGxφNMNHseqM+˙FN=seqMQGN
32 2fveq3 x=MHFx=HFM
33 fveq2 x=MGx=GM
34 32 33 eqeq12d x=MHFx=GxHFM=GM
35 5 ralrimiva φxMNHFx=Gx
36 eluzfz1 NMMMN
37 3 36 syl φMMN
38 34 35 37 rspcdva φHFM=GM
39 eluzel2 NMM
40 seq1 MseqM+˙FM=FM
41 3 39 40 3syl φseqM+˙FM=FM
42 41 fveq2d φHseqM+˙FM=HFM
43 seq1 MseqMQGM=GM
44 3 39 43 3syl φseqMQGM=GM
45 38 42 44 3eqtr4d φHseqM+˙FM=seqMQGM
46 45 a1d φMMNHseqM+˙FM=seqMQGM
47 peano2fzr nMn+1MNnMN
48 47 adantl φnMn+1MNnMN
49 48 expr φnMn+1MNnMN
50 49 imim1d φnMnMNHseqM+˙Fn=seqMQGnn+1MNHseqM+˙Fn=seqMQGn
51 oveq1 HseqM+˙Fn=seqMQGnHseqM+˙FnQGn+1=seqMQGnQGn+1
52 seqp1 nMseqM+˙Fn+1=seqM+˙Fn+˙Fn+1
53 52 ad2antrl φnMn+1MNseqM+˙Fn+1=seqM+˙Fn+˙Fn+1
54 53 fveq2d φnMn+1MNHseqM+˙Fn+1=HseqM+˙Fn+˙Fn+1
55 4 ralrimivva φxSySHx+˙y=HxQHy
56 55 adantr φnMn+1MNxSySHx+˙y=HxQHy
57 simprl φnMn+1MNnM
58 elfzuz3 nMNNn
59 fzss2 NnMnMN
60 48 58 59 3syl φnMn+1MNMnMN
61 60 sselda φnMn+1MNxMnxMN
62 2 adantlr φnMn+1MNxMNFxS
63 61 62 syldan φnMn+1MNxMnFxS
64 1 adantlr φnMn+1MNxSySx+˙yS
65 57 63 64 seqcl φnMn+1MNseqM+˙FnS
66 fveq2 x=n+1Fx=Fn+1
67 66 eleq1d x=n+1FxSFn+1S
68 2 ralrimiva φxMNFxS
69 68 adantr φnMn+1MNxMNFxS
70 simprr φnMn+1MNn+1MN
71 67 69 70 rspcdva φnMn+1MNFn+1S
72 fvoveq1 x=seqM+˙FnHx+˙y=HseqM+˙Fn+˙y
73 fveq2 x=seqM+˙FnHx=HseqM+˙Fn
74 73 oveq1d x=seqM+˙FnHxQHy=HseqM+˙FnQHy
75 72 74 eqeq12d x=seqM+˙FnHx+˙y=HxQHyHseqM+˙Fn+˙y=HseqM+˙FnQHy
76 oveq2 y=Fn+1seqM+˙Fn+˙y=seqM+˙Fn+˙Fn+1
77 76 fveq2d y=Fn+1HseqM+˙Fn+˙y=HseqM+˙Fn+˙Fn+1
78 fveq2 y=Fn+1Hy=HFn+1
79 78 oveq2d y=Fn+1HseqM+˙FnQHy=HseqM+˙FnQHFn+1
80 77 79 eqeq12d y=Fn+1HseqM+˙Fn+˙y=HseqM+˙FnQHyHseqM+˙Fn+˙Fn+1=HseqM+˙FnQHFn+1
81 75 80 rspc2v seqM+˙FnSFn+1SxSySHx+˙y=HxQHyHseqM+˙Fn+˙Fn+1=HseqM+˙FnQHFn+1
82 65 71 81 syl2anc φnMn+1MNxSySHx+˙y=HxQHyHseqM+˙Fn+˙Fn+1=HseqM+˙FnQHFn+1
83 56 82 mpd φnMn+1MNHseqM+˙Fn+˙Fn+1=HseqM+˙FnQHFn+1
84 2fveq3 x=n+1HFx=HFn+1
85 fveq2 x=n+1Gx=Gn+1
86 84 85 eqeq12d x=n+1HFx=GxHFn+1=Gn+1
87 35 adantr φnMn+1MNxMNHFx=Gx
88 86 87 70 rspcdva φnMn+1MNHFn+1=Gn+1
89 88 oveq2d φnMn+1MNHseqM+˙FnQHFn+1=HseqM+˙FnQGn+1
90 54 83 89 3eqtrd φnMn+1MNHseqM+˙Fn+1=HseqM+˙FnQGn+1
91 seqp1 nMseqMQGn+1=seqMQGnQGn+1
92 91 ad2antrl φnMn+1MNseqMQGn+1=seqMQGnQGn+1
93 90 92 eqeq12d φnMn+1MNHseqM+˙Fn+1=seqMQGn+1HseqM+˙FnQGn+1=seqMQGnQGn+1
94 51 93 imbitrrid φnMn+1MNHseqM+˙Fn=seqMQGnHseqM+˙Fn+1=seqMQGn+1
95 50 94 animpimp2impd nMφnMNHseqM+˙Fn=seqMQGnφn+1MNHseqM+˙Fn+1=seqMQGn+1
96 13 19 25 31 46 95 uzind4i NMφNMNHseqM+˙FN=seqMQGN
97 3 96 mpcom φNMNHseqM+˙FN=seqMQGN
98 7 97 mpd φHseqM+˙FN=seqMQGN