Metamath Proof Explorer


Theorem seqz

Description: If the operation .+ has an absorbing element Z (a.k.a. zero element), then any sequence containing a Z evaluates to Z . (Contributed by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqhomo.1 φxSySx+˙yS
seqhomo.2 φxMNFxS
seqz.3 φxSZ+˙x=Z
seqz.4 φxSx+˙Z=Z
seqz.5 φKMN
seqz.6 φNV
seqz.7 φFK=Z
Assertion seqz φseqM+˙FN=Z

Proof

Step Hyp Ref Expression
1 seqhomo.1 φxSySx+˙yS
2 seqhomo.2 φxMNFxS
3 seqz.3 φxSZ+˙x=Z
4 seqz.4 φxSx+˙Z=Z
5 seqz.5 φKMN
6 seqz.6 φNV
7 seqz.7 φFK=Z
8 elfzuz KMNKM
9 5 8 syl φKM
10 5 elfzelzd φK
11 seq1 KseqK+˙FK=FK
12 10 11 syl φseqK+˙FK=FK
13 12 7 eqtrd φseqK+˙FK=Z
14 seqeq1 K=MseqK+˙F=seqM+˙F
15 14 fveq1d K=MseqK+˙FK=seqM+˙FK
16 15 eqeq1d K=MseqK+˙FK=ZseqM+˙FK=Z
17 13 16 syl5ibcom φK=MseqM+˙FK=Z
18 eluzel2 KMM
19 9 18 syl φM
20 seqm1 MKM+1seqM+˙FK=seqM+˙FK1+˙FK
21 19 20 sylan φKM+1seqM+˙FK=seqM+˙FK1+˙FK
22 7 adantr φKM+1FK=Z
23 22 oveq2d φKM+1seqM+˙FK1+˙FK=seqM+˙FK1+˙Z
24 oveq1 x=seqM+˙FK1x+˙Z=seqM+˙FK1+˙Z
25 24 eqeq1d x=seqM+˙FK1x+˙Z=ZseqM+˙FK1+˙Z=Z
26 4 ralrimiva φxSx+˙Z=Z
27 26 adantr φKM+1xSx+˙Z=Z
28 eluzp1m1 MKM+1K1M
29 19 28 sylan φKM+1K1M
30 fzssp1 MK1MK-1+1
31 10 zcnd φK
32 ax-1cn 1
33 npcan K1K-1+1=K
34 31 32 33 sylancl φK-1+1=K
35 34 oveq2d φMK-1+1=MK
36 30 35 sseqtrid φMK1MK
37 elfzuz3 KMNNK
38 5 37 syl φNK
39 fzss2 NKMKMN
40 38 39 syl φMKMN
41 36 40 sstrd φMK1MN
42 41 adantr φKM+1MK1MN
43 42 sselda φKM+1xMK1xMN
44 2 adantlr φKM+1xMNFxS
45 43 44 syldan φKM+1xMK1FxS
46 1 adantlr φKM+1xSySx+˙yS
47 29 45 46 seqcl φKM+1seqM+˙FK1S
48 25 27 47 rspcdva φKM+1seqM+˙FK1+˙Z=Z
49 23 48 eqtrd φKM+1seqM+˙FK1+˙FK=Z
50 21 49 eqtrd φKM+1seqM+˙FK=Z
51 50 ex φKM+1seqM+˙FK=Z
52 uzp1 KMK=MKM+1
53 9 52 syl φK=MKM+1
54 17 51 53 mpjaod φseqM+˙FK=Z
55 54 7 eqtr4d φseqM+˙FK=FK
56 eqidd φxK+1NFx=Fx
57 9 55 38 56 seqfveq2 φseqM+˙FN=seqK+˙FN
58 fvex FKV
59 58 elsn FKZFK=Z
60 7 59 sylibr φFKZ
61 simprl φxZySxZ
62 velsn xZx=Z
63 61 62 sylib φxZySx=Z
64 63 oveq1d φxZySx+˙y=Z+˙y
65 oveq2 x=yZ+˙x=Z+˙y
66 65 eqeq1d x=yZ+˙x=ZZ+˙y=Z
67 3 ralrimiva φxSZ+˙x=Z
68 67 adantr φxZySxSZ+˙x=Z
69 simprr φxZySyS
70 66 68 69 rspcdva φxZySZ+˙y=Z
71 64 70 eqtrd φxZySx+˙y=Z
72 ovex x+˙yV
73 72 elsn x+˙yZx+˙y=Z
74 71 73 sylibr φxZySx+˙yZ
75 peano2uz KMK+1M
76 9 75 syl φK+1M
77 fzss1 K+1MK+1NMN
78 76 77 syl φK+1NMN
79 78 sselda φxK+1NxMN
80 79 2 syldan φxK+1NFxS
81 60 74 38 80 seqcl2 φseqK+˙FNZ
82 elsni seqK+˙FNZseqK+˙FN=Z
83 81 82 syl φseqK+˙FN=Z
84 57 83 eqtrd φseqM+˙FN=Z