Metamath Proof Explorer


Theorem setrec2fun

Description: This is the second of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs ( F ) is a subclass of all classes C that are closed under F . Taken together, Theorems setrec1 and setrec2v say that setrecs ( F ) is the minimal class closed under F .

We express this by saying that if F respects the C_ relation and C is closed under F , then B C_ C . By substituting strategically constructed classes for C , we can easily prove many useful properties. Although this theorem cannot show equality between B and C , if we intend to prove equality between B and some particular class (such as On ), we first apply this theorem, then the relevant induction theorem (such as tfi ) to the other class. (Contributed by Emmett Weisz, 15-Feb-2021) (New usage is discouraged.)

Ref Expression
Hypotheses setrec2fun.1 _aF
setrec2fun.2 B=setrecsF
setrec2fun.3 FunF
setrec2fun.4 φaaCFaC
Assertion setrec2fun φBC

Proof

Step Hyp Ref Expression
1 setrec2fun.1 _aF
2 setrec2fun.2 B=setrecsF
3 setrec2fun.3 FunF
4 setrec2fun.4 φaaCFaC
5 df-setrecs setrecsF=y|zwwywzFwzyz
6 2 5 eqtri B=y|zwwywzFwzyz
7 eqid y|zwwywzFwzyz=y|zwwywzFwzyz
8 vex xV
9 8 a1i φxV
10 7 9 setrec1lem1 φxy|zwwywzFwzyzzwwxwzFwzxz
11 id wCF𝒫xwCF𝒫x
12 inss1 CF𝒫xC
13 11 12 sstrdi wCF𝒫xwC
14 nfv awC
15 nfcv _aw
16 1 15 nffv _aFw
17 nfcv _aC
18 16 17 nfss aFwC
19 14 18 nfim awCFwC
20 sseq1 a=waCwC
21 fveq2 a=wFa=Fw
22 21 sseq1d a=wFaCFwC
23 20 22 imbi12d a=waCFaCwCFwC
24 23 biimpd a=waCFaCwCFwC
25 19 24 spimfv aaCFaCwCFwC
26 4 25 syl φwCFwC
27 13 26 syl5 φwCF𝒫xFwC
28 27 imp φwCF𝒫xFwC
29 28 3adant2 φwxwCF𝒫xFwC
30 velpw w𝒫xwx
31 eliman0 w𝒫x¬Fw=FwF𝒫x
32 31 ex w𝒫x¬Fw=FwF𝒫x
33 30 32 sylbir wx¬Fw=FwF𝒫x
34 elssuni FwF𝒫xFwF𝒫x
35 33 34 syl6 wx¬Fw=FwF𝒫x
36 id Fw=Fw=
37 0ss F𝒫x
38 36 37 eqsstrdi Fw=FwF𝒫x
39 35 38 pm2.61d2 wxFwF𝒫x
40 39 3ad2ant2 φwxwCF𝒫xFwF𝒫x
41 29 40 ssind φwxwCF𝒫xFwCF𝒫x
42 41 3exp φwxwCF𝒫xFwCF𝒫x
43 42 alrimiv φwwxwCF𝒫xFwCF𝒫x
44 8 pwex 𝒫xV
45 44 funimaex FunFF𝒫xV
46 3 45 ax-mp F𝒫xV
47 46 uniex F𝒫xV
48 47 inex2 CF𝒫xV
49 sseq2 z=CF𝒫xwzwCF𝒫x
50 sseq2 z=CF𝒫xFwzFwCF𝒫x
51 49 50 imbi12d z=CF𝒫xwzFwzwCF𝒫xFwCF𝒫x
52 51 imbi2d z=CF𝒫xwxwzFwzwxwCF𝒫xFwCF𝒫x
53 52 albidv z=CF𝒫xwwxwzFwzwwxwCF𝒫xFwCF𝒫x
54 sseq2 z=CF𝒫xxzxCF𝒫x
55 53 54 imbi12d z=CF𝒫xwwxwzFwzxzwwxwCF𝒫xFwCF𝒫xxCF𝒫x
56 48 55 spcv zwwxwzFwzxzwwxwCF𝒫xFwCF𝒫xxCF𝒫x
57 43 56 mpan9 φzwwxwzFwzxzxCF𝒫x
58 57 12 sstrdi φzwwxwzFwzxzxC
59 58 ex φzwwxwzFwzxzxC
60 10 59 sylbid φxy|zwwywzFwzyzxC
61 60 ralrimiv φxy|zwwywzFwzyzxC
62 unissb y|zwwywzFwzyzCxy|zwwywzFwzyzxC
63 61 62 sylibr φy|zwwywzFwzyzC
64 6 63 eqsstrid φBC