| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isrnsigau |
|
| 2 |
1
|
simprd |
|
| 3 |
2
|
simp2d |
|
| 4 |
3
|
adantr |
|
| 5 |
|
elpwi |
|
| 6 |
|
ssrexv |
|
| 7 |
5 6
|
syl |
|
| 8 |
7
|
ss2abdv |
|
| 9 |
|
isrnsigau |
|
| 10 |
9
|
simprd |
|
| 11 |
10
|
simp2d |
|
| 12 |
|
uniiunlem |
|
| 13 |
11 12
|
syl |
|
| 14 |
11 13
|
mpbid |
|
| 15 |
8 14
|
sylan9ssr |
|
| 16 |
|
abrexexg |
|
| 17 |
|
elpwg |
|
| 18 |
16 17
|
syl |
|
| 19 |
18
|
adantl |
|
| 20 |
15 19
|
mpbird |
|
| 21 |
2
|
simp3d |
|
| 22 |
21
|
adantr |
|
| 23 |
20 22
|
jca |
|
| 24 |
|
abrexdom2jm |
|
| 25 |
|
domtr |
|
| 26 |
24 25
|
sylan |
|
| 27 |
26
|
ex |
|
| 28 |
27
|
adantl |
|
| 29 |
|
breq1 |
|
| 30 |
|
unieq |
|
| 31 |
30
|
eleq1d |
|
| 32 |
29 31
|
imbi12d |
|
| 33 |
32
|
rspcva |
|
| 34 |
23 28 33
|
sylsyld |
|
| 35 |
5
|
adantl |
|
| 36 |
11
|
adantr |
|
| 37 |
|
ssralv |
|
| 38 |
35 36 37
|
sylc |
|
| 39 |
|
dfiun2g |
|
| 40 |
|
eleq1 |
|
| 41 |
38 39 40
|
3syl |
|
| 42 |
34 41
|
sylibrd |
|
| 43 |
|
difeq2 |
|
| 44 |
43
|
eleq1d |
|
| 45 |
44
|
rspccv |
|
| 46 |
4 42 45
|
sylsyld |
|
| 47 |
46
|
adantrd |
|
| 48 |
47
|
imp |
|
| 49 |
|
simpr |
|
| 50 |
|
pwuni |
|
| 51 |
5 50
|
sstrdi |
|
| 52 |
|
iundifdifd |
|
| 53 |
49 51 52
|
3syl |
|
| 54 |
53
|
adantld |
|
| 55 |
|
eleq1 |
|
| 56 |
54 55
|
syl6 |
|
| 57 |
56
|
imp |
|
| 58 |
48 57
|
mpbird |
|