Step |
Hyp |
Ref |
Expression |
1 |
|
isrnsigau |
|
2 |
1
|
simprd |
|
3 |
2
|
simp2d |
|
4 |
3
|
adantr |
|
5 |
|
elpwi |
|
6 |
|
ssrexv |
|
7 |
5 6
|
syl |
|
8 |
7
|
ss2abdv |
|
9 |
|
isrnsigau |
|
10 |
9
|
simprd |
|
11 |
10
|
simp2d |
|
12 |
|
uniiunlem |
|
13 |
11 12
|
syl |
|
14 |
11 13
|
mpbid |
|
15 |
8 14
|
sylan9ssr |
|
16 |
|
abrexexg |
|
17 |
|
elpwg |
|
18 |
16 17
|
syl |
|
19 |
18
|
adantl |
|
20 |
15 19
|
mpbird |
|
21 |
2
|
simp3d |
|
22 |
21
|
adantr |
|
23 |
20 22
|
jca |
|
24 |
|
abrexdom2jm |
|
25 |
|
domtr |
|
26 |
24 25
|
sylan |
|
27 |
26
|
ex |
|
28 |
27
|
adantl |
|
29 |
|
breq1 |
|
30 |
|
unieq |
|
31 |
30
|
eleq1d |
|
32 |
29 31
|
imbi12d |
|
33 |
32
|
rspcva |
|
34 |
23 28 33
|
sylsyld |
|
35 |
5
|
adantl |
|
36 |
11
|
adantr |
|
37 |
|
ssralv |
|
38 |
35 36 37
|
sylc |
|
39 |
|
dfiun2g |
|
40 |
|
eleq1 |
|
41 |
38 39 40
|
3syl |
|
42 |
34 41
|
sylibrd |
|
43 |
|
difeq2 |
|
44 |
43
|
eleq1d |
|
45 |
44
|
rspccv |
|
46 |
4 42 45
|
sylsyld |
|
47 |
46
|
adantrd |
|
48 |
47
|
imp |
|
49 |
|
simpr |
|
50 |
|
pwuni |
|
51 |
5 50
|
sstrdi |
|
52 |
|
iundifdifd |
|
53 |
49 51 52
|
3syl |
|
54 |
53
|
adantld |
|
55 |
|
eleq1 |
|
56 |
54 55
|
syl6 |
|
57 |
56
|
imp |
|
58 |
48 57
|
mpbird |
|