Description: A sigma-algebra is closed under countable intersections. Deduction version. (Contributed by Thierry Arnoux, 19-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | sigaclci | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrnsigau | |
|
2 | 1 | simprd | |
3 | 2 | simp2d | |
4 | 3 | adantr | |
5 | elpwi | |
|
6 | ssrexv | |
|
7 | 5 6 | syl | |
8 | 7 | ss2abdv | |
9 | isrnsigau | |
|
10 | 9 | simprd | |
11 | 10 | simp2d | |
12 | uniiunlem | |
|
13 | 11 12 | syl | |
14 | 11 13 | mpbid | |
15 | 8 14 | sylan9ssr | |
16 | abrexexg | |
|
17 | elpwg | |
|
18 | 16 17 | syl | |
19 | 18 | adantl | |
20 | 15 19 | mpbird | |
21 | 2 | simp3d | |
22 | 21 | adantr | |
23 | 20 22 | jca | |
24 | abrexdom2jm | |
|
25 | domtr | |
|
26 | 24 25 | sylan | |
27 | 26 | ex | |
28 | 27 | adantl | |
29 | breq1 | |
|
30 | unieq | |
|
31 | 30 | eleq1d | |
32 | 29 31 | imbi12d | |
33 | 32 | rspcva | |
34 | 23 28 33 | sylsyld | |
35 | 5 | adantl | |
36 | 11 | adantr | |
37 | ssralv | |
|
38 | 35 36 37 | sylc | |
39 | dfiun2g | |
|
40 | eleq1 | |
|
41 | 38 39 40 | 3syl | |
42 | 34 41 | sylibrd | |
43 | difeq2 | |
|
44 | 43 | eleq1d | |
45 | 44 | rspccv | |
46 | 4 42 45 | sylsyld | |
47 | 46 | adantrd | |
48 | 47 | imp | |
49 | simpr | |
|
50 | pwuni | |
|
51 | 5 50 | sstrdi | |
52 | iundifdifd | |
|
53 | 49 51 52 | 3syl | |
54 | 53 | adantld | |
55 | eleq1 | |
|
56 | 54 55 | syl6 | |
57 | 56 | imp | |
58 | 48 57 | mpbird | |