Metamath Proof Explorer


Theorem smatvscl

Description: Closure of the scalar multiplication in the ring of scalar matrices. ( matvscl analog.) (Contributed by AV, 24-Dec-2019)

Ref Expression
Hypotheses smatvscl.k K=BaseR
smatvscl.a A=NMatR
smatvscl.s S=NScMatR
smatvscl.t ˙=A
Assertion smatvscl NFinRRingCKXSC˙XS

Proof

Step Hyp Ref Expression
1 smatvscl.k K=BaseR
2 smatvscl.a A=NMatR
3 smatvscl.s S=NScMatR
4 smatvscl.t ˙=A
5 eqid BaseR=BaseR
6 eqid BaseA=BaseA
7 eqid 1A=1A
8 5 2 6 7 4 3 scmatel NFinRRingXSXBaseAcBaseRX=c˙1A
9 oveq2 X=c˙1AC˙X=C˙c˙1A
10 9 adantl NFinRRingCKXBaseAcBaseRX=c˙1AC˙X=C˙c˙1A
11 2 matlmod NFinRRingALMod
12 11 ad3antrrr NFinRRingCKXBaseAcBaseRALMod
13 2 matsca2 NFinRRingR=ScalarA
14 13 fveq2d NFinRRingBaseR=BaseScalarA
15 1 14 eqtrid NFinRRingK=BaseScalarA
16 15 eleq2d NFinRRingCKCBaseScalarA
17 16 biimpa NFinRRingCKCBaseScalarA
18 17 ad2antrr NFinRRingCKXBaseAcBaseRCBaseScalarA
19 13 ad2antrr NFinRRingCKXBaseAR=ScalarA
20 19 fveq2d NFinRRingCKXBaseABaseR=BaseScalarA
21 20 eleq2d NFinRRingCKXBaseAcBaseRcBaseScalarA
22 21 biimpa NFinRRingCKXBaseAcBaseRcBaseScalarA
23 2 matring NFinRRingARing
24 6 7 ringidcl ARing1ABaseA
25 23 24 syl NFinRRing1ABaseA
26 25 ad3antrrr NFinRRingCKXBaseAcBaseR1ABaseA
27 eqid ScalarA=ScalarA
28 eqid BaseScalarA=BaseScalarA
29 eqid ScalarA=ScalarA
30 6 27 4 28 29 lmodvsass ALModCBaseScalarAcBaseScalarA1ABaseACScalarAc˙1A=C˙c˙1A
31 12 18 22 26 30 syl13anc NFinRRingCKXBaseAcBaseRCScalarAc˙1A=C˙c˙1A
32 31 eqcomd NFinRRingCKXBaseAcBaseRC˙c˙1A=CScalarAc˙1A
33 simplll NFinRRingCKXBaseAcBaseRNFinRRing
34 13 adantr NFinRRingCKR=ScalarA
35 34 eqcomd NFinRRingCKScalarA=R
36 35 ad2antrr NFinRRingCKXBaseAcBaseRScalarA=R
37 36 fveq2d NFinRRingCKXBaseAcBaseRScalarA=R
38 37 oveqd NFinRRingCKXBaseAcBaseRCScalarAc=CRc
39 simp-4r NFinRRingCKXBaseAcBaseRRRing
40 simpllr NFinRRingCKXBaseAcBaseRCK
41 1 eqcomi BaseR=K
42 41 eleq2i cBaseRcK
43 42 biimpi cBaseRcK
44 43 adantl NFinRRingCKXBaseAcBaseRcK
45 eqid R=R
46 1 45 ringcl RRingCKcKCRcK
47 39 40 44 46 syl3anc NFinRRingCKXBaseAcBaseRCRcK
48 38 47 eqeltrd NFinRRingCKXBaseAcBaseRCScalarAcK
49 1 2 6 4 matvscl NFinRRingCScalarAcK1ABaseACScalarAc˙1ABaseA
50 33 48 26 49 syl12anc NFinRRingCKXBaseAcBaseRCScalarAc˙1ABaseA
51 oveq1 CScalarAc=eCScalarAc˙1A=e˙1A
52 51 eqcoms e=CScalarAcCScalarAc˙1A=e˙1A
53 52 adantl NFinRRingCKXBaseAcBaseRe=CScalarAcCScalarAc˙1A=e˙1A
54 48 53 rspcedeq2vd NFinRRingCKXBaseAcBaseReKCScalarAc˙1A=e˙1A
55 1 2 6 7 4 3 scmatel NFinRRingCScalarAc˙1ASCScalarAc˙1ABaseAeKCScalarAc˙1A=e˙1A
56 55 ad3antrrr NFinRRingCKXBaseAcBaseRCScalarAc˙1ASCScalarAc˙1ABaseAeKCScalarAc˙1A=e˙1A
57 50 54 56 mpbir2and NFinRRingCKXBaseAcBaseRCScalarAc˙1AS
58 32 57 eqeltrd NFinRRingCKXBaseAcBaseRC˙c˙1AS
59 58 adantr NFinRRingCKXBaseAcBaseRX=c˙1AC˙c˙1AS
60 10 59 eqeltrd NFinRRingCKXBaseAcBaseRX=c˙1AC˙XS
61 60 rexlimdva2 NFinRRingCKXBaseAcBaseRX=c˙1AC˙XS
62 61 expimpd NFinRRingCKXBaseAcBaseRX=c˙1AC˙XS
63 62 ex NFinRRingCKXBaseAcBaseRX=c˙1AC˙XS
64 63 com23 NFinRRingXBaseAcBaseRX=c˙1ACKC˙XS
65 8 64 sylbid NFinRRingXSCKC˙XS
66 65 com23 NFinRRingCKXSC˙XS
67 66 imp32 NFinRRingCKXSC˙XS