Description: Closure of the scalar multiplication in the ring of scalar matrices. ( matvscl analog.) (Contributed by AV, 24-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smatvscl.k | |
|
smatvscl.a | |
||
smatvscl.s | |
||
smatvscl.t | |
||
Assertion | smatvscl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smatvscl.k | |
|
2 | smatvscl.a | |
|
3 | smatvscl.s | |
|
4 | smatvscl.t | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | 5 2 6 7 4 3 | scmatel | |
9 | oveq2 | |
|
10 | 9 | adantl | |
11 | 2 | matlmod | |
12 | 11 | ad3antrrr | |
13 | 2 | matsca2 | |
14 | 13 | fveq2d | |
15 | 1 14 | eqtrid | |
16 | 15 | eleq2d | |
17 | 16 | biimpa | |
18 | 17 | ad2antrr | |
19 | 13 | ad2antrr | |
20 | 19 | fveq2d | |
21 | 20 | eleq2d | |
22 | 21 | biimpa | |
23 | 2 | matring | |
24 | 6 7 | ringidcl | |
25 | 23 24 | syl | |
26 | 25 | ad3antrrr | |
27 | eqid | |
|
28 | eqid | |
|
29 | eqid | |
|
30 | 6 27 4 28 29 | lmodvsass | |
31 | 12 18 22 26 30 | syl13anc | |
32 | 31 | eqcomd | |
33 | simplll | |
|
34 | 13 | adantr | |
35 | 34 | eqcomd | |
36 | 35 | ad2antrr | |
37 | 36 | fveq2d | |
38 | 37 | oveqd | |
39 | simp-4r | |
|
40 | simpllr | |
|
41 | 1 | eqcomi | |
42 | 41 | eleq2i | |
43 | 42 | biimpi | |
44 | 43 | adantl | |
45 | eqid | |
|
46 | 1 45 | ringcl | |
47 | 39 40 44 46 | syl3anc | |
48 | 38 47 | eqeltrd | |
49 | 1 2 6 4 | matvscl | |
50 | 33 48 26 49 | syl12anc | |
51 | oveq1 | |
|
52 | 51 | eqcoms | |
53 | 52 | adantl | |
54 | 48 53 | rspcedeq2vd | |
55 | 1 2 6 7 4 3 | scmatel | |
56 | 55 | ad3antrrr | |
57 | 50 54 56 | mpbir2and | |
58 | 32 57 | eqeltrd | |
59 | 58 | adantr | |
60 | 10 59 | eqeltrd | |
61 | 60 | rexlimdva2 | |
62 | 61 | expimpd | |
63 | 62 | ex | |
64 | 63 | com23 | |
65 | 8 64 | sylbid | |
66 | 65 | com23 | |
67 | 66 | imp32 | |