| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smatvscl.k |
|
| 2 |
|
smatvscl.a |
|
| 3 |
|
smatvscl.s |
|
| 4 |
|
smatvscl.t |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
5 2 6 7 4 3
|
scmatel |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
adantl |
|
| 11 |
2
|
matlmod |
|
| 12 |
11
|
ad3antrrr |
|
| 13 |
2
|
matsca2 |
|
| 14 |
13
|
fveq2d |
|
| 15 |
1 14
|
eqtrid |
|
| 16 |
15
|
eleq2d |
|
| 17 |
16
|
biimpa |
|
| 18 |
17
|
ad2antrr |
|
| 19 |
13
|
ad2antrr |
|
| 20 |
19
|
fveq2d |
|
| 21 |
20
|
eleq2d |
|
| 22 |
21
|
biimpa |
|
| 23 |
2
|
matring |
|
| 24 |
6 7
|
ringidcl |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
ad3antrrr |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
6 27 4 28 29
|
lmodvsass |
|
| 31 |
12 18 22 26 30
|
syl13anc |
|
| 32 |
31
|
eqcomd |
|
| 33 |
|
simplll |
|
| 34 |
13
|
adantr |
|
| 35 |
34
|
eqcomd |
|
| 36 |
35
|
ad2antrr |
|
| 37 |
36
|
fveq2d |
|
| 38 |
37
|
oveqd |
|
| 39 |
|
simp-4r |
|
| 40 |
|
simpllr |
|
| 41 |
1
|
eqcomi |
|
| 42 |
41
|
eleq2i |
|
| 43 |
42
|
biimpi |
|
| 44 |
43
|
adantl |
|
| 45 |
|
eqid |
|
| 46 |
1 45
|
ringcl |
|
| 47 |
39 40 44 46
|
syl3anc |
|
| 48 |
38 47
|
eqeltrd |
|
| 49 |
1 2 6 4
|
matvscl |
|
| 50 |
33 48 26 49
|
syl12anc |
|
| 51 |
|
oveq1 |
|
| 52 |
51
|
eqcoms |
|
| 53 |
52
|
adantl |
|
| 54 |
48 53
|
rspcedeq2vd |
|
| 55 |
1 2 6 7 4 3
|
scmatel |
|
| 56 |
55
|
ad3antrrr |
|
| 57 |
50 54 56
|
mpbir2and |
|
| 58 |
32 57
|
eqeltrd |
|
| 59 |
58
|
adantr |
|
| 60 |
10 59
|
eqeltrd |
|
| 61 |
60
|
rexlimdva2 |
|
| 62 |
61
|
expimpd |
|
| 63 |
62
|
ex |
|
| 64 |
63
|
com23 |
|
| 65 |
8 64
|
sylbid |
|
| 66 |
65
|
com23 |
|
| 67 |
66
|
imp32 |
|