Metamath Proof Explorer


Theorem smfmul

Description: The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfmul.x xφ
smfmul.s φSSAlg
smfmul.a φAV
smfmul.b φxAB
smfmul.d φxCD
smfmul.m φxABSMblFnS
smfmul.n φxCDSMblFnS
Assertion smfmul φxACBDSMblFnS

Proof

Step Hyp Ref Expression
1 smfmul.x xφ
2 smfmul.s φSSAlg
3 smfmul.a φAV
4 smfmul.b φxAB
5 smfmul.d φxCD
6 smfmul.m φxABSMblFnS
7 smfmul.n φxCDSMblFnS
8 nfv aφ
9 elinel1 xACxA
10 9 adantl φxACxA
11 1 10 ssdf φACA
12 eqid xAB=xAB
13 1 12 4 dmmptdf φdomxAB=A
14 13 eqcomd φA=domxAB
15 eqid domxAB=domxAB
16 2 6 15 smfdmss φdomxABS
17 14 16 eqsstrd φAS
18 11 17 sstrd φACS
19 10 4 syldan φxACB
20 elinel2 xACxC
21 20 adantl φxACxC
22 21 5 syldan φxACD
23 19 22 remulcld φxACBD
24 nfv xa
25 1 24 nfan xφa
26 2 adantr φaSSAlg
27 3 adantr φaAV
28 4 adantlr φaxAB
29 5 adantlr φaxCD
30 6 adantr φaxABSMblFnS
31 7 adantr φaxCDSMblFnS
32 simpr φaa
33 fveq1 p=qp2=q2
34 fveq1 p=qp3=q3
35 33 34 oveq12d p=qp2p3=q2q3
36 35 raleqdv p=qvp2p3uv<avq2q3uv<a
37 36 ralbidv p=qup0p1vp2p3uv<aup0p1vq2q3uv<a
38 fveq1 p=qp0=q0
39 fveq1 p=qp1=q1
40 38 39 oveq12d p=qp0p1=q0q1
41 40 raleqdv p=qup0p1vq2q3uv<auq0q1vq2q3uv<a
42 37 41 bitrd p=qup0p1vp2p3uv<auq0q1vq2q3uv<a
43 42 cbvrabv p03|up0p1vp2p3uv<a=q03|uq0q1vq2q3uv<a
44 eqid qp03|up0p1vp2p3uv<axAC|Bq0q1Dq2q3=qp03|up0p1vp2p3uv<axAC|Bq0q1Dq2q3
45 25 26 27 28 29 30 31 32 43 44 smfmullem4 φaxAC|BD<aS𝑡AC
46 1 8 2 18 23 45 issmfdmpt φxACBDSMblFnS