Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfpimltxr.x | |
|
smfpimltxr.s | |
||
smfpimltxr.f | |
||
smfpimltxr.d | |
||
smfpimltxr.a | |
||
Assertion | smfpimltxr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimltxr.x | |
|
2 | smfpimltxr.s | |
|
3 | smfpimltxr.f | |
|
4 | smfpimltxr.d | |
|
5 | smfpimltxr.a | |
|
6 | breq2 | |
|
7 | 6 | rabbidv | |
8 | 1 | nfdm | |
9 | 4 8 | nfcxfr | |
10 | 2 3 4 | smff | |
11 | 1 9 10 | pimltpnf2f | |
12 | 7 11 | sylan9eqr | |
13 | 2 3 4 | smfdmss | |
14 | 2 13 | subsaluni | |
15 | 14 | adantr | |
16 | 12 15 | eqeltrd | |
17 | breq2 | |
|
18 | 17 | rabbidv | |
19 | 18 | adantl | |
20 | 10 | adantr | |
21 | 1 9 20 | pimltmnf2f | |
22 | 19 21 | eqtrd | |
23 | 3 | dmexd | |
24 | 4 23 | eqeltrid | |
25 | eqid | |
|
26 | 2 24 25 | subsalsal | |
27 | 26 | 0sald | |
28 | 27 | adantr | |
29 | 22 28 | eqeltrd | |
30 | 29 | adantlr | |
31 | simpll | |
|
32 | 31 5 | syl | |
33 | neqne | |
|
34 | 33 | adantl | |
35 | simplr | |
|
36 | 32 34 35 | xrred | |
37 | 2 | adantr | |
38 | 3 | adantr | |
39 | simpr | |
|
40 | 1 37 38 4 39 | smfpreimaltf | |
41 | 31 36 40 | syl2anc | |
42 | 30 41 | pm2.61dan | |
43 | 16 42 | pm2.61dane | |