Metamath Proof Explorer


Theorem smfpimltxr

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses smfpimltxr.x _xF
smfpimltxr.s φSSAlg
smfpimltxr.f φFSMblFnS
smfpimltxr.d D=domF
smfpimltxr.a φA*
Assertion smfpimltxr φxD|Fx<AS𝑡D

Proof

Step Hyp Ref Expression
1 smfpimltxr.x _xF
2 smfpimltxr.s φSSAlg
3 smfpimltxr.f φFSMblFnS
4 smfpimltxr.d D=domF
5 smfpimltxr.a φA*
6 breq2 A=+∞Fx<AFx<+∞
7 6 rabbidv A=+∞xD|Fx<A=xD|Fx<+∞
8 1 nfdm _xdomF
9 4 8 nfcxfr _xD
10 2 3 4 smff φF:D
11 1 9 10 pimltpnf2f φxD|Fx<+∞=D
12 7 11 sylan9eqr φA=+∞xD|Fx<A=D
13 2 3 4 smfdmss φDS
14 2 13 subsaluni φDS𝑡D
15 14 adantr φA=+∞DS𝑡D
16 12 15 eqeltrd φA=+∞xD|Fx<AS𝑡D
17 breq2 A=−∞Fx<AFx<−∞
18 17 rabbidv A=−∞xD|Fx<A=xD|Fx<−∞
19 18 adantl φA=−∞xD|Fx<A=xD|Fx<−∞
20 10 adantr φA=−∞F:D
21 1 9 20 pimltmnf2f φA=−∞xD|Fx<−∞=
22 19 21 eqtrd φA=−∞xD|Fx<A=
23 3 dmexd φdomFV
24 4 23 eqeltrid φDV
25 eqid S𝑡D=S𝑡D
26 2 24 25 subsalsal φS𝑡DSAlg
27 26 0sald φS𝑡D
28 27 adantr φA=−∞S𝑡D
29 22 28 eqeltrd φA=−∞xD|Fx<AS𝑡D
30 29 adantlr φA+∞A=−∞xD|Fx<AS𝑡D
31 simpll φA+∞¬A=−∞φ
32 31 5 syl φA+∞¬A=−∞A*
33 neqne ¬A=−∞A−∞
34 33 adantl φA+∞¬A=−∞A−∞
35 simplr φA+∞¬A=−∞A+∞
36 32 34 35 xrred φA+∞¬A=−∞A
37 2 adantr φASSAlg
38 3 adantr φAFSMblFnS
39 simpr φAA
40 1 37 38 4 39 smfpreimaltf φAxD|Fx<AS𝑡D
41 31 36 40 syl2anc φA+∞¬A=−∞xD|Fx<AS𝑡D
42 30 41 pm2.61dan φA+∞xD|Fx<AS𝑡D
43 16 42 pm2.61dane φxD|Fx<AS𝑡D