Metamath Proof Explorer


Theorem smfpimltxr

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses smfpimltxr.x _ x F
smfpimltxr.s φ S SAlg
smfpimltxr.f φ F SMblFn S
smfpimltxr.d D = dom F
smfpimltxr.a φ A *
Assertion smfpimltxr φ x D | F x < A S 𝑡 D

Proof

Step Hyp Ref Expression
1 smfpimltxr.x _ x F
2 smfpimltxr.s φ S SAlg
3 smfpimltxr.f φ F SMblFn S
4 smfpimltxr.d D = dom F
5 smfpimltxr.a φ A *
6 breq2 A = +∞ F x < A F x < +∞
7 6 rabbidv A = +∞ x D | F x < A = x D | F x < +∞
8 1 nfdm _ x dom F
9 4 8 nfcxfr _ x D
10 2 3 4 smff φ F : D
11 1 9 10 pimltpnf2f φ x D | F x < +∞ = D
12 7 11 sylan9eqr φ A = +∞ x D | F x < A = D
13 2 3 4 smfdmss φ D S
14 2 13 subsaluni φ D S 𝑡 D
15 14 adantr φ A = +∞ D S 𝑡 D
16 12 15 eqeltrd φ A = +∞ x D | F x < A S 𝑡 D
17 breq2 A = −∞ F x < A F x < −∞
18 17 rabbidv A = −∞ x D | F x < A = x D | F x < −∞
19 18 adantl φ A = −∞ x D | F x < A = x D | F x < −∞
20 10 adantr φ A = −∞ F : D
21 1 9 20 pimltmnf2f φ A = −∞ x D | F x < −∞ =
22 19 21 eqtrd φ A = −∞ x D | F x < A =
23 3 dmexd φ dom F V
24 4 23 eqeltrid φ D V
25 eqid S 𝑡 D = S 𝑡 D
26 2 24 25 subsalsal φ S 𝑡 D SAlg
27 26 0sald φ S 𝑡 D
28 27 adantr φ A = −∞ S 𝑡 D
29 22 28 eqeltrd φ A = −∞ x D | F x < A S 𝑡 D
30 29 adantlr φ A +∞ A = −∞ x D | F x < A S 𝑡 D
31 simpll φ A +∞ ¬ A = −∞ φ
32 31 5 syl φ A +∞ ¬ A = −∞ A *
33 neqne ¬ A = −∞ A −∞
34 33 adantl φ A +∞ ¬ A = −∞ A −∞
35 simplr φ A +∞ ¬ A = −∞ A +∞
36 32 34 35 xrred φ A +∞ ¬ A = −∞ A
37 2 adantr φ A S SAlg
38 3 adantr φ A F SMblFn S
39 simpr φ A A
40 1 37 38 4 39 smfpreimaltf φ A x D | F x < A S 𝑡 D
41 31 36 40 syl2anc φ A +∞ ¬ A = −∞ x D | F x < A S 𝑡 D
42 30 41 pm2.61dan φ A +∞ x D | F x < A S 𝑡 D
43 16 42 pm2.61dane φ x D | F x < A S 𝑡 D