Metamath Proof Explorer


Theorem smfres

Description: The restriction of sigma-measurable function is sigma-measurable. Proposition 121E (h) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfres.s φSSAlg
smfres.f φFSMblFnS
smfres.a φAV
Assertion smfres φFASMblFnS

Proof

Step Hyp Ref Expression
1 smfres.s φSSAlg
2 smfres.f φFSMblFnS
3 smfres.a φAV
4 nfv aφ
5 inss1 domFAdomF
6 5 a1i φdomFAdomF
7 eqid domF=domF
8 1 2 7 smfdmss φdomFS
9 6 8 sstrd φdomFAS
10 1 2 7 smff φF:domF
11 fresin F:domFFA:domFA
12 10 11 syl φFA:domFA
13 ovexd φaS𝑡domFV
14 3 adantr φaAV
15 1 adantr φaSSAlg
16 2 adantr φaFSMblFnS
17 mnfxr −∞*
18 17 a1i φa−∞*
19 rexr aa*
20 19 adantl φaa*
21 15 16 7 18 20 smfpimioo φaF-1−∞aS𝑡domF
22 eqid F-1−∞aA=F-1−∞aA
23 13 14 21 22 elrestd φaF-1−∞aAS𝑡domF𝑡A
24 10 ffund φFunF
25 respreima FunFFA-1−∞a=F-1−∞aA
26 24 25 syl φFA-1−∞a=F-1−∞aA
27 26 eqcomd φF-1−∞aA=FA-1−∞a
28 27 adantr φaF-1−∞aA=FA-1−∞a
29 12 adantr φaFA:domFA
30 29 20 preimaioomnf φaFA-1−∞a=xdomFA|FAx<a
31 28 30 eqtr2d φaxdomFA|FAx<a=F-1−∞aA
32 2 dmexd φdomFV
33 restco SSAlgdomFVAVS𝑡domF𝑡A=S𝑡domFA
34 1 32 3 33 syl3anc φS𝑡domF𝑡A=S𝑡domFA
35 34 adantr φaS𝑡domF𝑡A=S𝑡domFA
36 35 eqcomd φaS𝑡domFA=S𝑡domF𝑡A
37 31 36 eleq12d φaxdomFA|FAx<aS𝑡domFAF-1−∞aAS𝑡domF𝑡A
38 23 37 mpbird φaxdomFA|FAx<aS𝑡domFA
39 4 1 9 12 38 issmfd φFASMblFnS