Description: The restriction of sigma-measurable function is sigma-measurable. Proposition 121E (h) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfres.s | |
|
smfres.f | |
||
smfres.a | |
||
Assertion | smfres | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfres.s | |
|
2 | smfres.f | |
|
3 | smfres.a | |
|
4 | nfv | |
|
5 | inss1 | |
|
6 | 5 | a1i | |
7 | eqid | |
|
8 | 1 2 7 | smfdmss | |
9 | 6 8 | sstrd | |
10 | 1 2 7 | smff | |
11 | fresin | |
|
12 | 10 11 | syl | |
13 | ovexd | |
|
14 | 3 | adantr | |
15 | 1 | adantr | |
16 | 2 | adantr | |
17 | mnfxr | |
|
18 | 17 | a1i | |
19 | rexr | |
|
20 | 19 | adantl | |
21 | 15 16 7 18 20 | smfpimioo | |
22 | eqid | |
|
23 | 13 14 21 22 | elrestd | |
24 | 10 | ffund | |
25 | respreima | |
|
26 | 24 25 | syl | |
27 | 26 | eqcomd | |
28 | 27 | adantr | |
29 | 12 | adantr | |
30 | 29 20 | preimaioomnf | |
31 | 28 30 | eqtr2d | |
32 | 2 | dmexd | |
33 | restco | |
|
34 | 1 32 3 33 | syl3anc | |
35 | 34 | adantr | |
36 | 35 | eqcomd | |
37 | 31 36 | eleq12d | |
38 | 23 37 | mpbird | |
39 | 4 1 9 12 38 | issmfd | |