Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their supremum function has the domain in the sigma-algebra. This is the fourth statement of Proposition 121H of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 24-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfsupdmmbllem.1 | |
|
smfsupdmmbllem.2 | |
||
smfsupdmmbllem.3 | |
||
smfsupdmmbllem.4 | |
||
smfsupdmmbllem.5 | |
||
smfsupdmmbllem.6 | |
||
smfsupdmmbllem.7 | |
||
smfsupdmmbllem.8 | |
||
smfsupdmmbllem.9 | |
||
smfsupdmmbllem.10 | |
||
smfsupdmmbllem.11 | |
||
smfsupdmmbllem.12 | |
||
Assertion | smfsupdmmbllem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfsupdmmbllem.1 | |
|
2 | smfsupdmmbllem.2 | |
|
3 | smfsupdmmbllem.3 | |
|
4 | smfsupdmmbllem.4 | |
|
5 | smfsupdmmbllem.5 | |
|
6 | smfsupdmmbllem.6 | |
|
7 | smfsupdmmbllem.7 | |
|
8 | smfsupdmmbllem.8 | |
|
9 | smfsupdmmbllem.9 | |
|
10 | smfsupdmmbllem.10 | |
|
11 | smfsupdmmbllem.11 | |
|
12 | smfsupdmmbllem.12 | |
|
13 | 7 | adantr | |
14 | 8 | ffvelcdmda | |
15 | eqid | |
|
16 | 13 14 15 | smff | |
17 | 16 | frexr | |
18 | 1 2 3 4 17 10 12 11 | fsupdm2 | |
19 | nfcv | |
|
20 | nfcv | |
|
21 | nnct | |
|
22 | 21 | a1i | |
23 | nfv | |
|
24 | 1 23 | nfan | |
25 | nfcv | |
|
26 | nfcv | |
|
27 | 7 | adantr | |
28 | 6 | uzct | |
29 | 28 | a1i | |
30 | 5 6 | uzn0d | |
31 | 30 | adantr | |
32 | 27 | adantr | |
33 | 9 | adantlr | |
34 | 32 33 | salrestss | |
35 | nfv | |
|
36 | 3 35 | nfan | |
37 | nfcv | |
|
38 | 4 37 | nffv | |
39 | 14 | adantlr | |
40 | nnxr | |
|
41 | 40 | ad2antlr | |
42 | 38 32 39 15 41 | smfpimltxr | |
43 | 42 | an32s | |
44 | 36 43 | fmptd2f | |
45 | simpr | |
|
46 | nnex | |
|
47 | 46 | mptex | |
48 | 11 | fvmpt2 | |
49 | 45 47 48 | sylancl | |
50 | 49 | feq1d | |
51 | 44 50 | mpbird | |
52 | 51 | adantlr | |
53 | simplr | |
|
54 | 52 53 | ffvelcdmd | |
55 | 34 54 | sseldd | |
56 | 24 25 26 27 29 31 55 | saliinclf | |
57 | 3 19 20 7 22 56 | saliunclf | |
58 | 18 57 | eqeltrd | |