Metamath Proof Explorer


Theorem smndex1mgm

Description: The monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) is a magma. (Contributed by AV, 14-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I=x0xmodN
smndex1ibas.g G=n0..^Nx0n
smndex1mgm.b B=In0..^NGn
smndex1mgm.s S=M𝑠B
Assertion smndex1mgm SMgm

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I=x0xmodN
4 smndex1ibas.g G=n0..^Nx0n
5 smndex1mgm.b B=In0..^NGn
6 smndex1mgm.s S=M𝑠B
7 1 2 3 4 5 smndex1basss BBaseM
8 ssel BBaseMaBaBaseM
9 ssel BBaseMbBbBaseM
10 8 9 anim12d BBaseMaBbBaBaseMbBaseM
11 7 10 ax-mp aBbBaBaseMbBaseM
12 eqid BaseM=BaseM
13 eqid +M=+M
14 1 12 13 efmndov aBaseMbBaseMa+Mb=ab
15 11 14 syl aBbBa+Mb=ab
16 simpl a=Ib=Ia=I
17 simpr a=Ib=Ib=I
18 16 17 coeq12d a=Ib=Iab=II
19 1 2 3 smndex1iidm II=I
20 18 19 eqtrdi a=Ib=Iab=I
21 20 orcd a=Ib=Iab=Ik0..^Nab=Gk
22 21 ex a=Ib=Iab=Ik0..^Nab=Gk
23 simpll a=Ik0..^Nb=Gka=I
24 simpr a=Ik0..^Nb=Gkb=Gk
25 23 24 coeq12d a=Ik0..^Nb=Gkab=IGk
26 1 2 3 4 smndex1igid k0..^NIGk=Gk
27 26 ad2antlr a=Ik0..^Nb=GkIGk=Gk
28 25 27 eqtrd a=Ik0..^Nb=Gkab=Gk
29 28 ex a=Ik0..^Nb=Gkab=Gk
30 29 reximdva a=Ik0..^Nb=Gkk0..^Nab=Gk
31 30 imp a=Ik0..^Nb=Gkk0..^Nab=Gk
32 31 olcd a=Ik0..^Nb=Gkab=Ik0..^Nab=Gk
33 32 ex a=Ik0..^Nb=Gkab=Ik0..^Nab=Gk
34 22 33 jaod a=Ib=Ik0..^Nb=Gkab=Ik0..^Nab=Gk
35 simpr b=Ik0..^Na=Gka=Gk
36 simpll b=Ik0..^Na=Gkb=I
37 35 36 coeq12d b=Ik0..^Na=Gkab=GkI
38 1 2 3 smndex1ibas IBaseM
39 1 2 3 4 smndex1gid IBaseMk0..^NGkI=Gk
40 38 39 mpan k0..^NGkI=Gk
41 40 ad2antlr b=Ik0..^Na=GkGkI=Gk
42 37 41 eqtrd b=Ik0..^Na=Gkab=Gk
43 42 ex b=Ik0..^Na=Gkab=Gk
44 43 reximdva b=Ik0..^Na=Gkk0..^Nab=Gk
45 44 imp b=Ik0..^Na=Gkk0..^Nab=Gk
46 45 olcd b=Ik0..^Na=Gkab=Ik0..^Nab=Gk
47 46 expcom k0..^Na=Gkb=Iab=Ik0..^Nab=Gk
48 fveq2 k=mGk=Gm
49 48 eqeq2d k=mb=Gkb=Gm
50 49 cbvrexvw k0..^Nb=Gkm0..^Nb=Gm
51 simpr m0..^Nb=Gmk0..^Na=Gka=Gk
52 simpllr m0..^Nb=Gmk0..^Na=Gkb=Gm
53 51 52 coeq12d m0..^Nb=Gmk0..^Na=Gkab=GkGm
54 1 2 3 4 smndex1gbas m0..^NGmBaseM
55 1 2 3 4 smndex1gid GmBaseMk0..^NGkGm=Gk
56 54 55 sylan m0..^Nk0..^NGkGm=Gk
57 56 ad4ant13 m0..^Nb=Gmk0..^Na=GkGkGm=Gk
58 53 57 eqtrd m0..^Nb=Gmk0..^Na=Gkab=Gk
59 58 ex m0..^Nb=Gmk0..^Na=Gkab=Gk
60 59 reximdva m0..^Nb=Gmk0..^Na=Gkk0..^Nab=Gk
61 60 rexlimiva m0..^Nb=Gmk0..^Na=Gkk0..^Nab=Gk
62 61 imp m0..^Nb=Gmk0..^Na=Gkk0..^Nab=Gk
63 62 olcd m0..^Nb=Gmk0..^Na=Gkab=Ik0..^Nab=Gk
64 63 expcom k0..^Na=Gkm0..^Nb=Gmab=Ik0..^Nab=Gk
65 50 64 biimtrid k0..^Na=Gkk0..^Nb=Gkab=Ik0..^Nab=Gk
66 47 65 jaod k0..^Na=Gkb=Ik0..^Nb=Gkab=Ik0..^Nab=Gk
67 34 66 jaoi a=Ik0..^Na=Gkb=Ik0..^Nb=Gkab=Ik0..^Nab=Gk
68 67 imp a=Ik0..^Na=Gkb=Ik0..^Nb=Gkab=Ik0..^Nab=Gk
69 5 eleq2i aBaIn0..^NGn
70 fveq2 n=kGn=Gk
71 70 sneqd n=kGn=Gk
72 71 cbviunv n0..^NGn=k0..^NGk
73 72 uneq2i In0..^NGn=Ik0..^NGk
74 73 eleq2i aIn0..^NGnaIk0..^NGk
75 69 74 bitri aBaIk0..^NGk
76 elun aIk0..^NGkaIak0..^NGk
77 velsn aIa=I
78 eliun ak0..^NGkk0..^NaGk
79 velsn aGka=Gk
80 79 rexbii k0..^NaGkk0..^Na=Gk
81 78 80 bitri ak0..^NGkk0..^Na=Gk
82 77 81 orbi12i aIak0..^NGka=Ik0..^Na=Gk
83 75 76 82 3bitri aBa=Ik0..^Na=Gk
84 5 eleq2i bBbIn0..^NGn
85 73 eleq2i bIn0..^NGnbIk0..^NGk
86 84 85 bitri bBbIk0..^NGk
87 elun bIk0..^NGkbIbk0..^NGk
88 velsn bIb=I
89 eliun bk0..^NGkk0..^NbGk
90 velsn bGkb=Gk
91 90 rexbii k0..^NbGkk0..^Nb=Gk
92 89 91 bitri bk0..^NGkk0..^Nb=Gk
93 88 92 orbi12i bIbk0..^NGkb=Ik0..^Nb=Gk
94 86 87 93 3bitri bBb=Ik0..^Nb=Gk
95 83 94 anbi12i aBbBa=Ik0..^Na=Gkb=Ik0..^Nb=Gk
96 5 eleq2i abBabIn0..^NGn
97 73 eleq2i abIn0..^NGnabIk0..^NGk
98 96 97 bitri abBabIk0..^NGk
99 elun abIk0..^NGkabIabk0..^NGk
100 vex aV
101 vex bV
102 100 101 coex abV
103 102 elsn abIab=I
104 eliun abk0..^NGkk0..^NabGk
105 102 elsn abGkab=Gk
106 105 rexbii k0..^NabGkk0..^Nab=Gk
107 104 106 bitri abk0..^NGkk0..^Nab=Gk
108 103 107 orbi12i abIabk0..^NGkab=Ik0..^Nab=Gk
109 98 99 108 3bitri abBab=Ik0..^Nab=Gk
110 68 95 109 3imtr4i aBbBabB
111 15 110 eqeltrd aBbBa+MbB
112 111 rgen2 aBbBa+MbB
113 6 ovexi SV
114 1 2 3 4 5 6 smndex1bas BaseS=B
115 114 eqcomi B=BaseS
116 115 fvexi BV
117 6 13 ressplusg BV+M=+S
118 116 117 ax-mp +M=+S
119 115 118 ismgm SVSMgmaBbBa+MbB
120 113 119 ax-mp SMgmaBbBa+MbB
121 112 120 mpbir SMgm