Metamath Proof Explorer


Theorem soxp

Description: A lexicographical ordering of two strictly ordered classes. (Contributed by Scott Fenton, 17-Mar-2011) (Revised by Mario Carneiro, 7-Mar-2013)

Ref Expression
Hypothesis soxp.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy
Assertion soxp ROrASOrBTOrA×B

Proof

Step Hyp Ref Expression
1 soxp.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy
2 sopo ROrARPoA
3 sopo SOrBSPoB
4 1 poxp RPoASPoBTPoA×B
5 2 3 4 syl2an ROrASOrBTPoA×B
6 elxp tA×Babt=abaAbB
7 elxp uA×Bcdu=cdcAdB
8 ioran ¬aRca=cbSda=cb=d¬aRca=cbSd¬a=cb=d
9 ioran ¬aRca=cbSd¬aRc¬a=cbSd
10 ianor ¬a=cbSd¬a=c¬bSd
11 10 anbi2i ¬aRc¬a=cbSd¬aRc¬a=c¬bSd
12 9 11 bitri ¬aRca=cbSd¬aRc¬a=c¬bSd
13 ianor ¬a=cb=d¬a=c¬b=d
14 12 13 anbi12i ¬aRca=cbSd¬a=cb=d¬aRc¬a=c¬bSd¬a=c¬b=d
15 8 14 bitri ¬aRca=cbSda=cb=d¬aRc¬a=c¬bSd¬a=c¬b=d
16 solin ROrAaAcAaRca=ccRa
17 3orass aRca=ccRaaRca=ccRa
18 df-or aRca=ccRa¬aRca=ccRa
19 17 18 bitri aRca=ccRa¬aRca=ccRa
20 16 19 sylib ROrAaAcA¬aRca=ccRa
21 solin SOrBbBdBbSdb=ddSb
22 3orass bSdb=ddSbbSdb=ddSb
23 df-or bSdb=ddSb¬bSdb=ddSb
24 22 23 bitri bSdb=ddSb¬bSdb=ddSb
25 21 24 sylib SOrBbBdB¬bSdb=ddSb
26 25 orim2d SOrBbBdB¬a=c¬bSd¬a=cb=ddSb
27 20 26 im2anan9 ROrAaAcASOrBbBdB¬aRc¬a=c¬bSda=ccRa¬a=cb=ddSb
28 pm2.53 a=ccRa¬a=ccRa
29 orc cRacRac=adSb
30 28 29 syl6 a=ccRa¬a=ccRac=adSb
31 30 adantr a=ccRa¬a=cb=ddSb¬a=ccRac=adSb
32 orel1 ¬b=db=ddSbdSb
33 32 orim2d ¬b=d¬a=cb=ddSb¬a=cdSb
34 33 anim2d ¬b=da=ccRa¬a=cb=ddSba=ccRa¬a=cdSb
35 imor a=cdSb¬a=cdSb
36 35 biimpri ¬a=cdSba=cdSb
37 36 com12 a=c¬a=cdSbdSb
38 equcomi a=cc=a
39 38 anim1i a=cdSbc=adSb
40 39 olcd a=cdSbcRac=adSb
41 40 ex a=cdSbcRac=adSb
42 37 41 syld a=c¬a=cdSbcRac=adSb
43 29 a1d cRa¬a=cdSbcRac=adSb
44 42 43 jaoi a=ccRa¬a=cdSbcRac=adSb
45 44 imp a=ccRa¬a=cdSbcRac=adSb
46 34 45 syl6com a=ccRa¬a=cb=ddSb¬b=dcRac=adSb
47 31 46 jaod a=ccRa¬a=cb=ddSb¬a=c¬b=dcRac=adSb
48 27 47 syl6 ROrAaAcASOrBbBdB¬aRc¬a=c¬bSd¬a=c¬b=dcRac=adSb
49 48 impd ROrAaAcASOrBbBdB¬aRc¬a=c¬bSd¬a=c¬b=dcRac=adSb
50 15 49 biimtrid ROrAaAcASOrBbBdB¬aRca=cbSda=cb=dcRac=adSb
51 df-3or aRca=cbSda=cb=dcRac=adSbaRca=cbSda=cb=dcRac=adSb
52 df-or aRca=cbSda=cb=dcRac=adSb¬aRca=cbSda=cb=dcRac=adSb
53 51 52 bitri aRca=cbSda=cb=dcRac=adSb¬aRca=cbSda=cb=dcRac=adSb
54 50 53 sylibr ROrAaAcASOrBbBdBaRca=cbSda=cb=dcRac=adSb
55 pm3.2 aAcAbBdBaRca=cbSdaAcAbBdBaRca=cbSd
56 55 ad2ant2l ROrAaAcASOrBbBdBaRca=cbSdaAcAbBdBaRca=cbSd
57 idd ROrAaAcASOrBbBdBa=cb=da=cb=d
58 simpr ROrAaAcAaAcA
59 58 ancomd ROrAaAcAcAaA
60 simpr SOrBbBdBbBdB
61 60 ancomd SOrBbBdBdBbB
62 pm3.2 cAaAdBbBcRac=adSbcAaAdBbBcRac=adSb
63 59 61 62 syl2an ROrAaAcASOrBbBdBcRac=adSbcAaAdBbBcRac=adSb
64 56 57 63 3orim123d ROrAaAcASOrBbBdBaRca=cbSda=cb=dcRac=adSbaAcAbBdBaRca=cbSda=cb=dcAaAdBbBcRac=adSb
65 54 64 mpd ROrAaAcASOrBbBdBaAcAbBdBaRca=cbSda=cb=dcAaAdBbBcRac=adSb
66 65 an4s ROrASOrBaAcAbBdBaAcAbBdBaRca=cbSda=cb=dcAaAdBbBcRac=adSb
67 66 expcom aAcAbBdBROrASOrBaAcAbBdBaRca=cbSda=cb=dcAaAdBbBcRac=adSb
68 67 an4s aAbBcAdBROrASOrBaAcAbBdBaRca=cbSda=cb=dcAaAdBbBcRac=adSb
69 breq12 t=abu=cdtTuabTcd
70 eqeq12 t=abu=cdt=uab=cd
71 breq12 u=cdt=abuTtcdTab
72 71 ancoms t=abu=cduTtcdTab
73 69 70 72 3orbi123d t=abu=cdtTut=uuTtabTcdab=cdcdTab
74 1 xporderlem abTcdaAcAbBdBaRca=cbSd
75 vex aV
76 vex bV
77 75 76 opth ab=cda=cb=d
78 1 xporderlem cdTabcAaAdBbBcRac=adSb
79 74 77 78 3orbi123i abTcdab=cdcdTabaAcAbBdBaRca=cbSda=cb=dcAaAdBbBcRac=adSb
80 73 79 bitrdi t=abu=cdtTut=uuTtaAcAbBdBaRca=cbSda=cb=dcAaAdBbBcRac=adSb
81 80 biimprcd aAcAbBdBaRca=cbSda=cb=dcAaAdBbBcRac=adSbt=abu=cdtTut=uuTt
82 68 81 syl6 aAbBcAdBROrASOrBt=abu=cdtTut=uuTt
83 82 com3r t=abu=cdaAbBcAdBROrASOrBtTut=uuTt
84 83 imp t=abu=cdaAbBcAdBROrASOrBtTut=uuTt
85 84 an4s t=abaAbBu=cdcAdBROrASOrBtTut=uuTt
86 85 expcom u=cdcAdBt=abaAbBROrASOrBtTut=uuTt
87 86 exlimivv cdu=cdcAdBt=abaAbBROrASOrBtTut=uuTt
88 87 com12 t=abaAbBcdu=cdcAdBROrASOrBtTut=uuTt
89 88 exlimivv abt=abaAbBcdu=cdcAdBROrASOrBtTut=uuTt
90 89 imp abt=abaAbBcdu=cdcAdBROrASOrBtTut=uuTt
91 6 7 90 syl2anb tA×BuA×BROrASOrBtTut=uuTt
92 91 com12 ROrASOrBtA×BuA×BtTut=uuTt
93 92 ralrimivv ROrASOrBtA×BuA×BtTut=uuTt
94 df-so TOrA×BTPoA×BtA×BuA×BtTut=uuTt
95 5 93 94 sylanbrc ROrASOrBTOrA×B