Metamath Proof Explorer


Theorem sqgt0sr

Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996) (New usage is discouraged.)

Ref Expression
Assertion sqgt0sr A𝑹A0𝑹0𝑹<𝑹A𝑹A

Proof

Step Hyp Ref Expression
1 0r 0𝑹𝑹
2 ltsosr <𝑹Or𝑹
3 sotrieq <𝑹Or𝑹A𝑹0𝑹𝑹A=0𝑹¬A<𝑹0𝑹0𝑹<𝑹A
4 2 3 mpan A𝑹0𝑹𝑹A=0𝑹¬A<𝑹0𝑹0𝑹<𝑹A
5 1 4 mpan2 A𝑹A=0𝑹¬A<𝑹0𝑹0𝑹<𝑹A
6 5 necon2abid A𝑹A<𝑹0𝑹0𝑹<𝑹AA0𝑹
7 m1r -1𝑹𝑹
8 mulclsr A𝑹-1𝑹𝑹A𝑹-1𝑹𝑹
9 7 8 mpan2 A𝑹A𝑹-1𝑹𝑹
10 ltasr A𝑹-1𝑹𝑹A<𝑹0𝑹A𝑹-1𝑹+𝑹A<𝑹A𝑹-1𝑹+𝑹0𝑹
11 9 10 syl A𝑹A<𝑹0𝑹A𝑹-1𝑹+𝑹A<𝑹A𝑹-1𝑹+𝑹0𝑹
12 addcomsr A𝑹-1𝑹+𝑹A=A+𝑹A𝑹-1𝑹
13 pn0sr A𝑹A+𝑹A𝑹-1𝑹=0𝑹
14 12 13 eqtrid A𝑹A𝑹-1𝑹+𝑹A=0𝑹
15 0idsr A𝑹-1𝑹𝑹A𝑹-1𝑹+𝑹0𝑹=A𝑹-1𝑹
16 9 15 syl A𝑹A𝑹-1𝑹+𝑹0𝑹=A𝑹-1𝑹
17 14 16 breq12d A𝑹A𝑹-1𝑹+𝑹A<𝑹A𝑹-1𝑹+𝑹0𝑹0𝑹<𝑹A𝑹-1𝑹
18 11 17 bitrd A𝑹A<𝑹0𝑹0𝑹<𝑹A𝑹-1𝑹
19 mulgt0sr 0𝑹<𝑹A𝑹-1𝑹0𝑹<𝑹A𝑹-1𝑹0𝑹<𝑹A𝑹-1𝑹𝑹A𝑹-1𝑹
20 19 anidms 0𝑹<𝑹A𝑹-1𝑹0𝑹<𝑹A𝑹-1𝑹𝑹A𝑹-1𝑹
21 18 20 syl6bi A𝑹A<𝑹0𝑹0𝑹<𝑹A𝑹-1𝑹𝑹A𝑹-1𝑹
22 mulcomsr -1𝑹𝑹A=A𝑹-1𝑹
23 22 oveq1i -1𝑹𝑹A𝑹-1𝑹=A𝑹-1𝑹𝑹-1𝑹
24 mulasssr -1𝑹𝑹A𝑹-1𝑹=-1𝑹𝑹A𝑹-1𝑹
25 mulasssr A𝑹-1𝑹𝑹-1𝑹=A𝑹-1𝑹𝑹-1𝑹
26 23 24 25 3eqtr3i -1𝑹𝑹A𝑹-1𝑹=A𝑹-1𝑹𝑹-1𝑹
27 m1m1sr -1𝑹𝑹-1𝑹=1𝑹
28 27 oveq2i A𝑹-1𝑹𝑹-1𝑹=A𝑹1𝑹
29 26 28 eqtri -1𝑹𝑹A𝑹-1𝑹=A𝑹1𝑹
30 29 oveq2i A𝑹-1𝑹𝑹A𝑹-1𝑹=A𝑹A𝑹1𝑹
31 mulasssr A𝑹-1𝑹𝑹A𝑹-1𝑹=A𝑹-1𝑹𝑹A𝑹-1𝑹
32 mulasssr A𝑹A𝑹1𝑹=A𝑹A𝑹1𝑹
33 30 31 32 3eqtr4i A𝑹-1𝑹𝑹A𝑹-1𝑹=A𝑹A𝑹1𝑹
34 mulclsr A𝑹A𝑹A𝑹A𝑹
35 1idsr A𝑹A𝑹A𝑹A𝑹1𝑹=A𝑹A
36 34 35 syl A𝑹A𝑹A𝑹A𝑹1𝑹=A𝑹A
37 36 anidms A𝑹A𝑹A𝑹1𝑹=A𝑹A
38 33 37 eqtrid A𝑹A𝑹-1𝑹𝑹A𝑹-1𝑹=A𝑹A
39 38 breq2d A𝑹0𝑹<𝑹A𝑹-1𝑹𝑹A𝑹-1𝑹0𝑹<𝑹A𝑹A
40 21 39 sylibd A𝑹A<𝑹0𝑹0𝑹<𝑹A𝑹A
41 mulgt0sr 0𝑹<𝑹A0𝑹<𝑹A0𝑹<𝑹A𝑹A
42 41 anidms 0𝑹<𝑹A0𝑹<𝑹A𝑹A
43 42 a1i A𝑹0𝑹<𝑹A0𝑹<𝑹A𝑹A
44 40 43 jaod A𝑹A<𝑹0𝑹0𝑹<𝑹A0𝑹<𝑹A𝑹A
45 6 44 sylbird A𝑹A0𝑹0𝑹<𝑹A𝑹A
46 45 imp A𝑹A0𝑹0𝑹<𝑹A𝑹A