Metamath Proof Explorer


Theorem sqnprm

Description: A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion sqnprm A¬A2

Proof

Step Hyp Ref Expression
1 zre AA
2 1 adantr AA2A
3 absresq AA2=A2
4 2 3 syl AA2A2=A2
5 2 recnd AA2A
6 5 abscld AA2A
7 6 recnd AA2A
8 7 sqvald AA2A2=AA
9 4 8 eqtr3d AA2A2=AA
10 simpr AA2A2
11 9 10 eqeltrrd AA2AA
12 nn0abscl AA0
13 12 adantr AA2A0
14 13 nn0zd AA2A
15 sq1 12=1
16 prmuz2 A2A22
17 16 adantl AA2A22
18 eluz2gt1 A221<A2
19 17 18 syl AA21<A2
20 19 4 breqtrrd AA21<A2
21 15 20 eqbrtrid AA212<A2
22 5 absge0d AA20A
23 1re 1
24 0le1 01
25 lt2sq 101A0A1<A12<A2
26 23 24 25 mpanl12 A0A1<A12<A2
27 6 22 26 syl2anc AA21<A12<A2
28 21 27 mpbird AA21<A
29 eluz2b1 A2A1<A
30 14 28 29 sylanbrc AA2A2
31 nprm A2A2¬AA
32 30 30 31 syl2anc AA2¬AA
33 11 32 pm2.65da A¬A2