Metamath Proof Explorer


Theorem sqreu

Description: Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Assertion sqreu A∃!xx2=A0xix+

Proof

Step Hyp Ref Expression
1 abscl AA
2 1 recnd AA
3 subneg AAAA=A+A
4 2 3 mpancom AAA=A+A
5 4 eqeq1d AAA=0A+A=0
6 negcl AA
7 2 6 subeq0ad AAA=0A=A
8 5 7 bitr3d AA+A=0A=A
9 ax-icn i
10 absge0 A0A
11 1 10 jca AA0A
12 eleq1 A=AAA
13 breq2 A=A0A0A
14 12 13 anbi12d A=AA0AA0A
15 11 14 imbitrid A=AAA0A
16 15 impcom AA=AA0A
17 resqrtcl A0AA
18 16 17 syl AA=AA
19 18 recnd AA=AA
20 mulcl iAiA
21 9 19 20 sylancr AA=AiA
22 sqrtneglem A0AiA2=A0iAiiA+
23 16 22 syl AA=AiA2=A0iAiiA+
24 negneg AA=A
25 24 adantr AA=AA=A
26 25 eqeq2d AA=AiA2=AiA2=A
27 26 3anbi1d AA=AiA2=A0iAiiA+iA2=A0iAiiA+
28 23 27 mpbid AA=AiA2=A0iAiiA+
29 oveq1 x=iAx2=iA2
30 29 eqeq1d x=iAx2=AiA2=A
31 fveq2 x=iAx=iA
32 31 breq2d x=iA0x0iA
33 oveq2 x=iAix=iiA
34 neleq1 ix=iiAix+iiA+
35 33 34 syl x=iAix+iiA+
36 30 32 35 3anbi123d x=iAx2=A0xix+iA2=A0iAiiA+
37 36 rspcev iAiA2=A0iAiiA+xx2=A0xix+
38 21 28 37 syl2anc AA=Axx2=A0xix+
39 38 ex AA=Axx2=A0xix+
40 8 39 sylbid AA+A=0xx2=A0xix+
41 resqrtcl A0AA
42 1 10 41 syl2anc AA
43 42 recnd AA
44 43 adantr AA+A0A
45 addcl AAA+A
46 2 45 mpancom AA+A
47 46 adantr AA+A0A+A
48 abscl A+AA+A
49 46 48 syl AA+A
50 49 recnd AA+A
51 50 adantr AA+A0A+A
52 46 abs00ad AA+A=0A+A=0
53 52 necon3bid AA+A0A+A0
54 53 biimpar AA+A0A+A0
55 47 51 54 divcld AA+A0A+AA+A
56 44 55 mulcld AA+A0AA+AA+A
57 eqid AA+AA+A=AA+AA+A
58 57 sqreulem AA+A0AA+AA+A2=A0AA+AA+AiAA+AA+A+
59 oveq1 x=AA+AA+Ax2=AA+AA+A2
60 59 eqeq1d x=AA+AA+Ax2=AAA+AA+A2=A
61 fveq2 x=AA+AA+Ax=AA+AA+A
62 61 breq2d x=AA+AA+A0x0AA+AA+A
63 oveq2 x=AA+AA+Aix=iAA+AA+A
64 neleq1 ix=iAA+AA+Aix+iAA+AA+A+
65 63 64 syl x=AA+AA+Aix+iAA+AA+A+
66 60 62 65 3anbi123d x=AA+AA+Ax2=A0xix+AA+AA+A2=A0AA+AA+AiAA+AA+A+
67 66 rspcev AA+AA+AAA+AA+A2=A0AA+AA+AiAA+AA+A+xx2=A0xix+
68 56 58 67 syl2anc AA+A0xx2=A0xix+
69 68 ex AA+A0xx2=A0xix+
70 40 69 pm2.61dne Axx2=A0xix+
71 sqrmo A*xx2=A0xix+
72 reu5 ∃!xx2=A0xix+xx2=A0xix+*xx2=A0xix+
73 70 71 72 sylanbrc A∃!xx2=A0xix+