Description: Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | sqreu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscl | |
|
2 | 1 | recnd | |
3 | subneg | |
|
4 | 2 3 | mpancom | |
5 | 4 | eqeq1d | |
6 | negcl | |
|
7 | 2 6 | subeq0ad | |
8 | 5 7 | bitr3d | |
9 | ax-icn | |
|
10 | absge0 | |
|
11 | 1 10 | jca | |
12 | eleq1 | |
|
13 | breq2 | |
|
14 | 12 13 | anbi12d | |
15 | 11 14 | imbitrid | |
16 | 15 | impcom | |
17 | resqrtcl | |
|
18 | 16 17 | syl | |
19 | 18 | recnd | |
20 | mulcl | |
|
21 | 9 19 20 | sylancr | |
22 | sqrtneglem | |
|
23 | 16 22 | syl | |
24 | negneg | |
|
25 | 24 | adantr | |
26 | 25 | eqeq2d | |
27 | 26 | 3anbi1d | |
28 | 23 27 | mpbid | |
29 | oveq1 | |
|
30 | 29 | eqeq1d | |
31 | fveq2 | |
|
32 | 31 | breq2d | |
33 | oveq2 | |
|
34 | neleq1 | |
|
35 | 33 34 | syl | |
36 | 30 32 35 | 3anbi123d | |
37 | 36 | rspcev | |
38 | 21 28 37 | syl2anc | |
39 | 38 | ex | |
40 | 8 39 | sylbid | |
41 | resqrtcl | |
|
42 | 1 10 41 | syl2anc | |
43 | 42 | recnd | |
44 | 43 | adantr | |
45 | addcl | |
|
46 | 2 45 | mpancom | |
47 | 46 | adantr | |
48 | abscl | |
|
49 | 46 48 | syl | |
50 | 49 | recnd | |
51 | 50 | adantr | |
52 | 46 | abs00ad | |
53 | 52 | necon3bid | |
54 | 53 | biimpar | |
55 | 47 51 54 | divcld | |
56 | 44 55 | mulcld | |
57 | eqid | |
|
58 | 57 | sqreulem | |
59 | oveq1 | |
|
60 | 59 | eqeq1d | |
61 | fveq2 | |
|
62 | 61 | breq2d | |
63 | oveq2 | |
|
64 | neleq1 | |
|
65 | 63 64 | syl | |
66 | 60 62 65 | 3anbi123d | |
67 | 66 | rspcev | |
68 | 56 58 67 | syl2anc | |
69 | 68 | ex | |
70 | 40 69 | pm2.61dne | |
71 | sqrmo | |
|
72 | reu5 | |
|
73 | 70 71 72 | sylanbrc | |