Description: The square compared with its argument. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sqrlearg.1 | |
|
Assertion | sqrlearg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrlearg.1 | |
|
2 | 0re | |
|
3 | 2 | a1i | |
4 | simpr | |
|
5 | 1red | |
|
6 | 1 | adantr | |
7 | 5 6 | ltnled | |
8 | 4 7 | mpbird | |
9 | 1red | |
|
10 | 1 | adantr | |
11 | 2 | a1i | |
12 | 0lt1 | |
|
13 | 12 | a1i | |
14 | simpr | |
|
15 | 11 9 10 13 14 | lttrd | |
16 | 10 15 | elrpd | |
17 | 9 10 16 14 | ltmul2dd | |
18 | 1 | recnd | |
19 | 18 | mulridd | |
20 | 19 | adantr | |
21 | 18 | sqvald | |
22 | 21 | eqcomd | |
23 | 22 | adantr | |
24 | 20 23 | breq12d | |
25 | 17 24 | mpbid | |
26 | 8 25 | syldan | |
27 | 26 | adantlr | |
28 | simpr | |
|
29 | 1 | resqcld | |
30 | 29 | adantr | |
31 | 1 | adantr | |
32 | 30 31 | lenltd | |
33 | 28 32 | mpbid | |
34 | 33 | adantr | |
35 | 27 34 | condan | |
36 | 1red | |
|
37 | 35 36 | syldan | |
38 | 31 | sqge0d | |
39 | 3 30 31 38 28 | letrd | |
40 | 3 37 31 39 35 | eliccd | |
41 | 40 | ex | |
42 | unitssre | |
|
43 | 42 | sseli | |
44 | 1red | |
|
45 | 0xr | |
|
46 | 45 | a1i | |
47 | 44 | rexrd | |
48 | id | |
|
49 | 46 47 48 | iccgelbd | |
50 | 46 47 48 | iccleubd | |
51 | 43 44 43 49 50 | lemul2ad | |
52 | 51 | adantl | |
53 | 22 | adantr | |
54 | 19 | adantr | |
55 | 53 54 | breq12d | |
56 | 52 55 | mpbid | |
57 | 56 | ex | |
58 | 41 57 | impbid | |