Metamath Proof Explorer


Theorem sqrlearg

Description: The square compared with its argument. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis sqrlearg.1 φA
Assertion sqrlearg φA2AA01

Proof

Step Hyp Ref Expression
1 sqrlearg.1 φA
2 0re 0
3 2 a1i φA2A0
4 simpr φ¬A1¬A1
5 1red φ¬A11
6 1 adantr φ¬A1A
7 5 6 ltnled φ¬A11<A¬A1
8 4 7 mpbird φ¬A11<A
9 1red φ1<A1
10 1 adantr φ1<AA
11 2 a1i φ1<A0
12 0lt1 0<1
13 12 a1i φ1<A0<1
14 simpr φ1<A1<A
15 11 9 10 13 14 lttrd φ1<A0<A
16 10 15 elrpd φ1<AA+
17 9 10 16 14 ltmul2dd φ1<AA1<AA
18 1 recnd φA
19 18 mulridd φA1=A
20 19 adantr φ1<AA1=A
21 18 sqvald φA2=AA
22 21 eqcomd φAA=A2
23 22 adantr φ1<AAA=A2
24 20 23 breq12d φ1<AA1<AAA<A2
25 17 24 mpbid φ1<AA<A2
26 8 25 syldan φ¬A1A<A2
27 26 adantlr φA2A¬A1A<A2
28 simpr φA2AA2A
29 1 resqcld φA2
30 29 adantr φA2AA2
31 1 adantr φA2AA
32 30 31 lenltd φA2AA2A¬A<A2
33 28 32 mpbid φA2A¬A<A2
34 33 adantr φA2A¬A1¬A<A2
35 27 34 condan φA2AA1
36 1red φA11
37 35 36 syldan φA2A1
38 31 sqge0d φA2A0A2
39 3 30 31 38 28 letrd φA2A0A
40 3 37 31 39 35 eliccd φA2AA01
41 40 ex φA2AA01
42 unitssre 01
43 42 sseli A01A
44 1red A011
45 0xr 0*
46 45 a1i A010*
47 44 rexrd A011*
48 id A01A01
49 46 47 48 iccgelbd A010A
50 46 47 48 iccleubd A01A1
51 43 44 43 49 50 lemul2ad A01AAA1
52 51 adantl φA01AAA1
53 22 adantr φA01AA=A2
54 19 adantr φA01A1=A
55 53 54 breq12d φA01AAA1A2A
56 52 55 mpbid φA01A2A
57 56 ex φA01A2A
58 41 57 impbid φA2AA01