Metamath Proof Explorer


Theorem sqrtnegnre

Description: The square root of a negative number is not a real number. (Contributed by AV, 28-Feb-2023)

Ref Expression
Assertion sqrtnegnre XX<0X

Proof

Step Hyp Ref Expression
1 recn XX
2 1 negnegd XX=X
3 2 adantr XX<0X=X
4 3 eqcomd XX<0X=X
5 4 fveq2d XX<0X=X
6 simpl XX<0X
7 6 renegcld XX<0X
8 0re 0
9 ltle X0X<0X0
10 8 9 mpan2 XX<0X0
11 10 imp XX<0X0
12 le0neg1 XX00X
13 12 adantr XX<0X00X
14 11 13 mpbid XX<00X
15 7 14 sqrtnegd XX<0X=iX
16 5 15 eqtrd XX<0X=iX
17 ax-icn i
18 17 a1i XX<0i
19 1 adantr XX<0X
20 19 negcld XX<0X
21 20 sqrtcld XX<0X
22 18 21 mulcomd XX<0iX=Xi
23 7 14 resqrtcld XX<0X
24 inelr ¬i
25 24 a1i XX<0¬i
26 18 25 eldifd XX<0i
27 lt0neg1 XX<00<X
28 8 a1i X0
29 ltne 00<XX0
30 28 29 sylan X0<XX0
31 simpl X0<XX
32 31 renegcld X0<XX
33 10 27 12 3imtr3d X0<X0X
34 33 imp X0<X0X
35 sqrt00 X0XX=0X=0
36 32 34 35 syl2anc X0<XX=0X=0
37 36 bicomd X0<XX=0X=0
38 37 necon3bid X0<XX0X0
39 30 38 mpbid X0<XX0
40 39 ex X0<XX0
41 27 40 sylbid XX<0X0
42 41 imp XX<0X0
43 23 26 42 recnmulnred XX<0Xi
44 df-nel Xi¬Xi
45 43 44 sylib XX<0¬Xi
46 22 45 eqneltrd XX<0¬iX
47 16 46 eqneltrd XX<0¬X
48 df-nel X¬X
49 47 48 sylibr XX<0X