| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
|
| 2 |
1
|
negnegd |
|
| 3 |
2
|
adantr |
|
| 4 |
3
|
eqcomd |
|
| 5 |
4
|
fveq2d |
|
| 6 |
|
simpl |
|
| 7 |
6
|
renegcld |
|
| 8 |
|
0re |
|
| 9 |
|
ltle |
|
| 10 |
8 9
|
mpan2 |
|
| 11 |
10
|
imp |
|
| 12 |
|
le0neg1 |
|
| 13 |
12
|
adantr |
|
| 14 |
11 13
|
mpbid |
|
| 15 |
7 14
|
sqrtnegd |
|
| 16 |
5 15
|
eqtrd |
|
| 17 |
|
ax-icn |
|
| 18 |
17
|
a1i |
|
| 19 |
1
|
adantr |
|
| 20 |
19
|
negcld |
|
| 21 |
20
|
sqrtcld |
|
| 22 |
18 21
|
mulcomd |
|
| 23 |
7 14
|
resqrtcld |
|
| 24 |
|
inelr |
|
| 25 |
24
|
a1i |
|
| 26 |
18 25
|
eldifd |
|
| 27 |
|
lt0neg1 |
|
| 28 |
8
|
a1i |
|
| 29 |
|
ltne |
|
| 30 |
28 29
|
sylan |
|
| 31 |
|
simpl |
|
| 32 |
31
|
renegcld |
|
| 33 |
10 27 12
|
3imtr3d |
|
| 34 |
33
|
imp |
|
| 35 |
|
sqrt00 |
|
| 36 |
32 34 35
|
syl2anc |
|
| 37 |
36
|
bicomd |
|
| 38 |
37
|
necon3bid |
|
| 39 |
30 38
|
mpbid |
|
| 40 |
39
|
ex |
|
| 41 |
27 40
|
sylbid |
|
| 42 |
41
|
imp |
|
| 43 |
23 26 42
|
recnmulnred |
|
| 44 |
|
df-nel |
|
| 45 |
43 44
|
sylib |
|
| 46 |
22 45
|
eqneltrd |
|
| 47 |
16 46
|
eqneltrd |
|
| 48 |
|
df-nel |
|
| 49 |
47 48
|
sylibr |
|