Description: Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringrghm . (Contributed by AV, 23-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | srglmhm.b | |
|
srglmhm.t | |
||
Assertion | srgrmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srglmhm.b | |
|
2 | srglmhm.t | |
|
3 | srgmnd | |
|
4 | 3 3 | jca | |
5 | 4 | adantr | |
6 | 1 2 | srgcl | |
7 | 6 | 3com23 | |
8 | 7 | 3expa | |
9 | 8 | fmpttd | |
10 | 3anrot | |
|
11 | 3anass | |
|
12 | 10 11 | bitr3i | |
13 | eqid | |
|
14 | 1 13 2 | srgdir | |
15 | 12 14 | sylan2br | |
16 | 15 | anassrs | |
17 | 1 13 | srgacl | |
18 | 17 | 3expb | |
19 | 18 | adantlr | |
20 | oveq1 | |
|
21 | eqid | |
|
22 | ovex | |
|
23 | 20 21 22 | fvmpt | |
24 | 19 23 | syl | |
25 | oveq1 | |
|
26 | ovex | |
|
27 | 25 21 26 | fvmpt | |
28 | oveq1 | |
|
29 | ovex | |
|
30 | 28 21 29 | fvmpt | |
31 | 27 30 | oveqan12d | |
32 | 31 | adantl | |
33 | 16 24 32 | 3eqtr4d | |
34 | 33 | ralrimivva | |
35 | eqid | |
|
36 | 1 35 | srg0cl | |
37 | 36 | adantr | |
38 | oveq1 | |
|
39 | ovex | |
|
40 | 38 21 39 | fvmpt | |
41 | 37 40 | syl | |
42 | 1 2 35 | srglz | |
43 | 41 42 | eqtrd | |
44 | 9 34 43 | 3jca | |
45 | 1 1 13 13 35 35 | ismhm | |
46 | 5 44 45 | sylanbrc | |