Metamath Proof Explorer


Theorem srgrmhm

Description: Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringrghm . (Contributed by AV, 23-Aug-2019)

Ref Expression
Hypotheses srglmhm.b B=BaseR
srglmhm.t ·˙=R
Assertion srgrmhm RSRingXBxBx·˙XRMndHomR

Proof

Step Hyp Ref Expression
1 srglmhm.b B=BaseR
2 srglmhm.t ·˙=R
3 srgmnd RSRingRMnd
4 3 3 jca RSRingRMndRMnd
5 4 adantr RSRingXBRMndRMnd
6 1 2 srgcl RSRingxBXBx·˙XB
7 6 3com23 RSRingXBxBx·˙XB
8 7 3expa RSRingXBxBx·˙XB
9 8 fmpttd RSRingXBxBx·˙X:BB
10 3anrot XBaBbBaBbBXB
11 3anass XBaBbBXBaBbB
12 10 11 bitr3i aBbBXBXBaBbB
13 eqid +R=+R
14 1 13 2 srgdir RSRingaBbBXBa+Rb·˙X=a·˙X+Rb·˙X
15 12 14 sylan2br RSRingXBaBbBa+Rb·˙X=a·˙X+Rb·˙X
16 15 anassrs RSRingXBaBbBa+Rb·˙X=a·˙X+Rb·˙X
17 1 13 srgacl RSRingaBbBa+RbB
18 17 3expb RSRingaBbBa+RbB
19 18 adantlr RSRingXBaBbBa+RbB
20 oveq1 x=a+Rbx·˙X=a+Rb·˙X
21 eqid xBx·˙X=xBx·˙X
22 ovex a+Rb·˙XV
23 20 21 22 fvmpt a+RbBxBx·˙Xa+Rb=a+Rb·˙X
24 19 23 syl RSRingXBaBbBxBx·˙Xa+Rb=a+Rb·˙X
25 oveq1 x=ax·˙X=a·˙X
26 ovex a·˙XV
27 25 21 26 fvmpt aBxBx·˙Xa=a·˙X
28 oveq1 x=bx·˙X=b·˙X
29 ovex b·˙XV
30 28 21 29 fvmpt bBxBx·˙Xb=b·˙X
31 27 30 oveqan12d aBbBxBx·˙Xa+RxBx·˙Xb=a·˙X+Rb·˙X
32 31 adantl RSRingXBaBbBxBx·˙Xa+RxBx·˙Xb=a·˙X+Rb·˙X
33 16 24 32 3eqtr4d RSRingXBaBbBxBx·˙Xa+Rb=xBx·˙Xa+RxBx·˙Xb
34 33 ralrimivva RSRingXBaBbBxBx·˙Xa+Rb=xBx·˙Xa+RxBx·˙Xb
35 eqid 0R=0R
36 1 35 srg0cl RSRing0RB
37 36 adantr RSRingXB0RB
38 oveq1 x=0Rx·˙X=0R·˙X
39 ovex 0R·˙XV
40 38 21 39 fvmpt 0RBxBx·˙X0R=0R·˙X
41 37 40 syl RSRingXBxBx·˙X0R=0R·˙X
42 1 2 35 srglz RSRingXB0R·˙X=0R
43 41 42 eqtrd RSRingXBxBx·˙X0R=0R
44 9 34 43 3jca RSRingXBxBx·˙X:BBaBbBxBx·˙Xa+Rb=xBx·˙Xa+RxBx·˙XbxBx·˙X0R=0R
45 1 1 13 13 35 35 ismhm xBx·˙XRMndHomRRMndRMndxBx·˙X:BBaBbBxBx·˙Xa+Rb=xBx·˙Xa+RxBx·˙XbxBx·˙X0R=0R
46 5 44 45 sylanbrc RSRingXBxBx·˙XRMndHomR