Metamath Proof Explorer


Theorem sseqfv2

Description: Value of the strong sequence builder function. (Contributed by Thierry Arnoux, 21-Apr-2019)

Ref Expression
Hypotheses sseqval.1 φSV
sseqval.2 φMWordS
sseqval.3 W=WordS.-1M
sseqval.4 φF:WS
sseqfv2.4 φNM
Assertion sseqfv2 φMseqstrFN=lastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩N

Proof

Step Hyp Ref Expression
1 sseqval.1 φSV
2 sseqval.2 φMWordS
3 sseqval.3 W=WordS.-1M
4 sseqval.4 φF:WS
5 sseqfv2.4 φNM
6 1 2 3 4 sseqval φMseqstrF=MlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩
7 6 fveq1d φMseqstrFN=MlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩N
8 wrdfn MWordSMFn0..^M
9 2 8 syl φMFn0..^M
10 fvex xx1V
11 df-lsw lastS=xVxx1
12 10 11 fnmpti lastSFnV
13 12 a1i φlastSFnV
14 lencl MWordSM0
15 2 14 syl φM0
16 15 nn0zd φM
17 seqfn MseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnM
18 16 17 syl φseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnM
19 ssv ranseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩V
20 19 a1i φranseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩V
21 fnco lastSFnVseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnMranseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩VlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnM
22 13 18 20 21 syl3anc φlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnM
23 fzouzdisj 0..^MM=
24 23 a1i φ0..^MM=
25 fvun2 MFn0..^MlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnM0..^MM=NMMlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩N=lastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩N
26 9 22 24 5 25 syl112anc φMlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩N=lastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩N
27 fnfun seqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnMFunseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩
28 18 27 syl φFunseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩
29 fvexd φ0×M++⟨“FM”⟩MV
30 ovexd φaVbVaxV,yVx++⟨“Fx”⟩bV
31 eqid M=M
32 fvexd φaM+10×M++⟨“FM”⟩aV
33 29 30 31 16 32 seqf2 φseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩:MV
34 33 fdmd φdomseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩=M
35 5 34 eleqtrrd φNdomseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩
36 fvco FunseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩NdomseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩lastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩N=lastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩N
37 28 35 36 syl2anc φlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩N=lastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩N
38 7 26 37 3eqtrd φMseqstrFN=lastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩N