Metamath Proof Explorer


Theorem ssnn0ssfz

Description: For any finite subset of NN0 , find a superset in the form of a set of sequential integers, analogous to ssnnssfz . (Contributed by AV, 30-Sep-2019)

Ref Expression
Assertion ssnn0ssfz A 𝒫 0 Fin n 0 A 0 n

Proof

Step Hyp Ref Expression
1 0nn0 0 0
2 simpr A 𝒫 0 Fin A = A =
3 0ss 0 0
4 2 3 eqsstrdi A 𝒫 0 Fin A = A 0 0
5 oveq2 n = 0 0 n = 0 0
6 5 sseq2d n = 0 A 0 n A 0 0
7 6 rspcev 0 0 A 0 0 n 0 A 0 n
8 1 4 7 sylancr A 𝒫 0 Fin A = n 0 A 0 n
9 elin A 𝒫 0 Fin A 𝒫 0 A Fin
10 9 simplbi A 𝒫 0 Fin A 𝒫 0
11 10 adantr A 𝒫 0 Fin A A 𝒫 0
12 11 elpwid A 𝒫 0 Fin A A 0
13 nn0ssre 0
14 ltso < Or
15 soss 0 < Or < Or 0
16 13 14 15 mp2 < Or 0
17 16 a1i A 𝒫 0 Fin A < Or 0
18 9 simprbi A 𝒫 0 Fin A Fin
19 18 adantr A 𝒫 0 Fin A A Fin
20 simpr A 𝒫 0 Fin A A
21 fisupcl < Or 0 A Fin A A 0 sup A 0 < A
22 17 19 20 12 21 syl13anc A 𝒫 0 Fin A sup A 0 < A
23 12 22 sseldd A 𝒫 0 Fin A sup A 0 < 0
24 12 sselda A 𝒫 0 Fin A x A x 0
25 nn0uz 0 = 0
26 24 25 eleqtrdi A 𝒫 0 Fin A x A x 0
27 24 nn0zd A 𝒫 0 Fin A x A x
28 12 adantr A 𝒫 0 Fin A x A A 0
29 22 adantr A 𝒫 0 Fin A x A sup A 0 < A
30 28 29 sseldd A 𝒫 0 Fin A x A sup A 0 < 0
31 30 nn0zd A 𝒫 0 Fin A x A sup A 0 <
32 fisup2g < Or 0 A Fin A A 0 x A y A ¬ x < y y 0 y < x z A y < z
33 17 19 20 12 32 syl13anc A 𝒫 0 Fin A x A y A ¬ x < y y 0 y < x z A y < z
34 ssrexv A 0 x A y A ¬ x < y y 0 y < x z A y < z x 0 y A ¬ x < y y 0 y < x z A y < z
35 12 33 34 sylc A 𝒫 0 Fin A x 0 y A ¬ x < y y 0 y < x z A y < z
36 17 35 supub A 𝒫 0 Fin A x A ¬ sup A 0 < < x
37 36 imp A 𝒫 0 Fin A x A ¬ sup A 0 < < x
38 24 nn0red A 𝒫 0 Fin A x A x
39 30 nn0red A 𝒫 0 Fin A x A sup A 0 <
40 38 39 lenltd A 𝒫 0 Fin A x A x sup A 0 < ¬ sup A 0 < < x
41 37 40 mpbird A 𝒫 0 Fin A x A x sup A 0 <
42 eluz2 sup A 0 < x x sup A 0 < x sup A 0 <
43 27 31 41 42 syl3anbrc A 𝒫 0 Fin A x A sup A 0 < x
44 eluzfz x 0 sup A 0 < x x 0 sup A 0 <
45 26 43 44 syl2anc A 𝒫 0 Fin A x A x 0 sup A 0 <
46 45 ex A 𝒫 0 Fin A x A x 0 sup A 0 <
47 46 ssrdv A 𝒫 0 Fin A A 0 sup A 0 <
48 oveq2 n = sup A 0 < 0 n = 0 sup A 0 <
49 48 sseq2d n = sup A 0 < A 0 n A 0 sup A 0 <
50 49 rspcev sup A 0 < 0 A 0 sup A 0 < n 0 A 0 n
51 23 47 50 syl2anc A 𝒫 0 Fin A n 0 A 0 n
52 8 51 pm2.61dane A 𝒫 0 Fin n 0 A 0 n