Metamath Proof Explorer


Theorem ssnn0ssfz

Description: For any finite subset of NN0 , find a superset in the form of a set of sequential integers, analogous to ssnnssfz . (Contributed by AV, 30-Sep-2019)

Ref Expression
Assertion ssnn0ssfz A𝒫0Finn0A0n

Proof

Step Hyp Ref Expression
1 0nn0 00
2 simpr A𝒫0FinA=A=
3 0ss 00
4 2 3 eqsstrdi A𝒫0FinA=A00
5 oveq2 n=00n=00
6 5 sseq2d n=0A0nA00
7 6 rspcev 00A00n0A0n
8 1 4 7 sylancr A𝒫0FinA=n0A0n
9 elin A𝒫0FinA𝒫0AFin
10 9 simplbi A𝒫0FinA𝒫0
11 10 adantr A𝒫0FinAA𝒫0
12 11 elpwid A𝒫0FinAA0
13 nn0ssre 0
14 ltso <Or
15 soss 0<Or<Or0
16 13 14 15 mp2 <Or0
17 16 a1i A𝒫0FinA<Or0
18 9 simprbi A𝒫0FinAFin
19 18 adantr A𝒫0FinAAFin
20 simpr A𝒫0FinAA
21 fisupcl <Or0AFinAA0supA0<A
22 17 19 20 12 21 syl13anc A𝒫0FinAsupA0<A
23 12 22 sseldd A𝒫0FinAsupA0<0
24 12 sselda A𝒫0FinAxAx0
25 nn0uz 0=0
26 24 25 eleqtrdi A𝒫0FinAxAx0
27 24 nn0zd A𝒫0FinAxAx
28 12 adantr A𝒫0FinAxAA0
29 22 adantr A𝒫0FinAxAsupA0<A
30 28 29 sseldd A𝒫0FinAxAsupA0<0
31 30 nn0zd A𝒫0FinAxAsupA0<
32 fisup2g <Or0AFinAA0xAyA¬x<yy0y<xzAy<z
33 17 19 20 12 32 syl13anc A𝒫0FinAxAyA¬x<yy0y<xzAy<z
34 ssrexv A0xAyA¬x<yy0y<xzAy<zx0yA¬x<yy0y<xzAy<z
35 12 33 34 sylc A𝒫0FinAx0yA¬x<yy0y<xzAy<z
36 17 35 supub A𝒫0FinAxA¬supA0<<x
37 36 imp A𝒫0FinAxA¬supA0<<x
38 24 nn0red A𝒫0FinAxAx
39 30 nn0red A𝒫0FinAxAsupA0<
40 38 39 lenltd A𝒫0FinAxAxsupA0<¬supA0<<x
41 37 40 mpbird A𝒫0FinAxAxsupA0<
42 eluz2 supA0<xxsupA0<xsupA0<
43 27 31 41 42 syl3anbrc A𝒫0FinAxAsupA0<x
44 eluzfz x0supA0<xx0supA0<
45 26 43 44 syl2anc A𝒫0FinAxAx0supA0<
46 45 ex A𝒫0FinAxAx0supA0<
47 46 ssrdv A𝒫0FinAA0supA0<
48 oveq2 n=supA0<0n=0supA0<
49 48 sseq2d n=supA0<A0nA0supA0<
50 49 rspcev supA0<0A0supA0<n0A0n
51 23 47 50 syl2anc A𝒫0FinAn0A0n
52 8 51 pm2.61dane A𝒫0Finn0A0n