Description: Use a net that is not necessarily finite, but for which only finitely many balls meet the subset. (Contributed by Mario Carneiro, 14-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sstotbnd.2 | |
|
Assertion | sstotbnd3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstotbnd.2 | |
|
2 | 1 | sstotbnd2 | |
3 | elin | |
|
4 | rabfi | |
|
5 | 4 | anim2i | |
6 | 3 5 | sylbi | |
7 | 6 | anim2i | |
8 | 7 | ancoms | |
9 | an12 | |
|
10 | 8 9 | sylib | |
11 | 10 | reximi2 | |
12 | 11 | ralimi | |
13 | 2 12 | syl6bi | |
14 | ssrab2 | |
|
15 | elpwi | |
|
16 | 15 | ad2antlr | |
17 | 14 16 | sstrid | |
18 | simprr | |
|
19 | elfpw | |
|
20 | 17 18 19 | sylanbrc | |
21 | ssel2 | |
|
22 | eliun | |
|
23 | 21 22 | sylib | |
24 | inelcm | |
|
25 | 24 | expcom | |
26 | 25 | ancrd | |
27 | 26 | reximdv | |
28 | 27 | impcom | |
29 | 23 28 | sylancom | |
30 | eliun | |
|
31 | oveq1 | |
|
32 | 31 | eleq2d | |
33 | 32 | rexrab2 | |
34 | 30 33 | bitri | |
35 | 29 34 | sylibr | |
36 | 35 | ex | |
37 | 36 | ssrdv | |
38 | 37 | ad2antrl | |
39 | iuneq1 | |
|
40 | 39 | sseq2d | |
41 | 40 | rspcev | |
42 | 20 38 41 | syl2anc | |
43 | 42 | rexlimdva2 | |
44 | 43 | ralimdv | |
45 | 1 | sstotbnd2 | |
46 | 44 45 | sylibrd | |
47 | 13 46 | impbid | |