Metamath Proof Explorer


Theorem stadd3i

Description: If the sum of 3 states is 3, then each state is 1. (Contributed by NM, 13-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stle.1 AC
stle.2 BC
stm1add3.3 CC
Assertion stadd3i SStatesSA+SB+SC=3SA=1

Proof

Step Hyp Ref Expression
1 stle.1 AC
2 stle.2 BC
3 stm1add3.3 CC
4 stcl SStatesACSA
5 1 4 mpi SStatesSA
6 5 recnd SStatesSA
7 stcl SStatesBCSB
8 2 7 mpi SStatesSB
9 8 recnd SStatesSB
10 stcl SStatesCCSC
11 3 10 mpi SStatesSC
12 11 recnd SStatesSC
13 6 9 12 addassd SStatesSA+SB+SC=SA+SB+SC
14 13 eqeq1d SStatesSA+SB+SC=3SA+SB+SC=3
15 eqcom SA+SB+SC=33=SA+SB+SC
16 8 11 readdcld SStatesSB+SC
17 5 16 readdcld SStatesSA+SB+SC
18 ltne SA+SB+SCSA+SB+SC<33SA+SB+SC
19 18 ex SA+SB+SCSA+SB+SC<33SA+SB+SC
20 17 19 syl SStatesSA+SB+SC<33SA+SB+SC
21 20 necon2bd SStates3=SA+SB+SC¬SA+SB+SC<3
22 15 21 biimtrid SStatesSA+SB+SC=3¬SA+SB+SC<3
23 1re 1
24 23 23 readdcli 1+1
25 24 a1i SStates1+1
26 1red SStates1
27 stle1 SStatesBCSB1
28 2 27 mpi SStatesSB1
29 stle1 SStatesCCSC1
30 3 29 mpi SStatesSC1
31 8 11 26 26 28 30 le2addd SStatesSB+SC1+1
32 16 25 5 31 leadd2dd SStatesSA+SB+SCSA+1+1
33 32 adantr SStatesSA<1SA+SB+SCSA+1+1
34 ltadd1 SA11+1SA<1SA+1+1<1+1+1
35 34 biimpd SA11+1SA<1SA+1+1<1+1+1
36 5 26 25 35 syl3anc SStatesSA<1SA+1+1<1+1+1
37 36 imp SStatesSA<1SA+1+1<1+1+1
38 readdcl SA1+1SA+1+1
39 5 24 38 sylancl SStatesSA+1+1
40 23 24 readdcli 1+1+1
41 40 a1i SStates1+1+1
42 lelttr SA+SB+SCSA+1+11+1+1SA+SB+SCSA+1+1SA+1+1<1+1+1SA+SB+SC<1+1+1
43 17 39 41 42 syl3anc SStatesSA+SB+SCSA+1+1SA+1+1<1+1+1SA+SB+SC<1+1+1
44 43 adantr SStatesSA<1SA+SB+SCSA+1+1SA+1+1<1+1+1SA+SB+SC<1+1+1
45 33 37 44 mp2and SStatesSA<1SA+SB+SC<1+1+1
46 df-3 3=2+1
47 df-2 2=1+1
48 47 oveq1i 2+1=1+1+1
49 ax-1cn 1
50 49 49 49 addassi 1+1+1=1+1+1
51 46 48 50 3eqtrri 1+1+1=3
52 45 51 breqtrdi SStatesSA<1SA+SB+SC<3
53 52 ex SStatesSA<1SA+SB+SC<3
54 53 con3d SStates¬SA+SB+SC<3¬SA<1
55 stle1 SStatesACSA1
56 1 55 mpi SStatesSA1
57 leloe SA1SA1SA<1SA=1
58 5 23 57 sylancl SStatesSA1SA<1SA=1
59 56 58 mpbid SStatesSA<1SA=1
60 59 ord SStates¬SA<1SA=1
61 22 54 60 3syld SStatesSA+SB+SC=3SA=1
62 14 61 sylbid SStatesSA+SB+SC=3SA=1