Metamath Proof Explorer


Theorem stoweidlem25

Description: This lemma proves that for n sufficiently large, q_n( t ) < ε, for all t in T \ U : see Lemma 1 BrosowskiDeutsh p. 91 (at the top of page 91). Q is used to represent q_n in the paper, N to represent n in the paper, K to represent k, D to represent δ, P to represent p, and E to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem25.1 Q = t T 1 P t N K N
stoweidlem25.2 φ N
stoweidlem25.3 φ K
stoweidlem25.4 φ D +
stoweidlem25.6 φ P : T
stoweidlem25.7 φ t T 0 P t P t 1
stoweidlem25.8 φ t T U D P t
stoweidlem25.9 φ E +
stoweidlem25.11 φ 1 K D N < E
Assertion stoweidlem25 φ t T U Q t < E

Proof

Step Hyp Ref Expression
1 stoweidlem25.1 Q = t T 1 P t N K N
2 stoweidlem25.2 φ N
3 stoweidlem25.3 φ K
4 stoweidlem25.4 φ D +
5 stoweidlem25.6 φ P : T
6 stoweidlem25.7 φ t T 0 P t P t 1
7 stoweidlem25.8 φ t T U D P t
8 stoweidlem25.9 φ E +
9 stoweidlem25.11 φ 1 K D N < E
10 eldifi t T U t T
11 2 nnnn0d φ N 0
12 3 nnnn0d φ K 0
13 1 5 11 12 stoweidlem12 φ t T Q t = 1 P t N K N
14 1red φ t T 1
15 5 ffvelrnda φ t T P t
16 11 adantr φ t T N 0
17 15 16 reexpcld φ t T P t N
18 14 17 resubcld φ t T 1 P t N
19 3 11 nnexpcld φ K N
20 19 nnnn0d φ K N 0
21 20 adantr φ t T K N 0
22 18 21 reexpcld φ t T 1 P t N K N
23 13 22 eqeltrd φ t T Q t
24 10 23 sylan2 φ t T U Q t
25 3 nnred φ K
26 4 rpred φ D
27 25 26 remulcld φ K D
28 27 11 reexpcld φ K D N
29 3 nncnd φ K
30 3 nnne0d φ K 0
31 4 rpcnne0d φ D D 0
32 mulne0 K K 0 D D 0 K D 0
33 29 30 31 32 syl21anc φ K D 0
34 4 rpcnd φ D
35 29 34 mulcld φ K D
36 expne0 K D N K D N 0 K D 0
37 35 2 36 syl2anc φ K D N 0 K D 0
38 33 37 mpbird φ K D N 0
39 28 38 rereccld φ 1 K D N
40 39 adantr φ t T U 1 K D N
41 8 rpred φ E
42 41 adantr φ t T U E
43 10 13 sylan2 φ t T U Q t = 1 P t N K N
44 2 adantr φ t T U N
45 3 adantr φ t T U K
46 4 adantr φ t T U D +
47 5 adantr φ t T U P : T
48 10 adantl φ t T U t T
49 47 48 ffvelrnd φ t T U P t
50 0red φ t T U 0
51 26 adantr φ t T U D
52 4 rpgt0d φ 0 < D
53 52 adantr φ t T U 0 < D
54 7 r19.21bi φ t T U D P t
55 50 51 49 53 54 ltletrd φ t T U 0 < P t
56 49 55 elrpd φ t T U P t +
57 6 adantr φ t T U t T 0 P t P t 1
58 rsp t T 0 P t P t 1 t T 0 P t P t 1
59 57 48 58 sylc φ t T U 0 P t P t 1
60 59 simpld φ t T U 0 P t
61 59 simprd φ t T U P t 1
62 44 45 46 56 60 61 54 stoweidlem1 φ t T U 1 P t N K N 1 K D N
63 43 62 eqbrtrd φ t T U Q t 1 K D N
64 9 adantr φ t T U 1 K D N < E
65 24 40 42 63 64 lelttrd φ t T U Q t < E