Metamath Proof Explorer


Theorem stoweidlem37

Description: This lemma is used to prove the existence of a function p as in Lemma 1 of BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Z is used for t_0, P is used for p, ( Gi ) is used for p__(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem37.1 Q=hA|hZ=0tT0htht1
stoweidlem37.2 P=tT1Mi=1MGit
stoweidlem37.3 φM
stoweidlem37.4 φG:1MQ
stoweidlem37.5 φfAf:T
stoweidlem37.6 φZT
Assertion stoweidlem37 φPZ=0

Proof

Step Hyp Ref Expression
1 stoweidlem37.1 Q=hA|hZ=0tT0htht1
2 stoweidlem37.2 P=tT1Mi=1MGit
3 stoweidlem37.3 φM
4 stoweidlem37.4 φG:1MQ
5 stoweidlem37.5 φfAf:T
6 stoweidlem37.6 φZT
7 1 2 3 4 5 stoweidlem30 φZTPZ=1Mi=1MGiZ
8 6 7 mpdan φPZ=1Mi=1MGiZ
9 4 ffvelcdmda φi1MGiQ
10 fveq1 h=GihZ=GiZ
11 10 eqeq1d h=GihZ=0GiZ=0
12 fveq1 h=Giht=Git
13 12 breq2d h=Gi0ht0Git
14 12 breq1d h=Giht1Git1
15 13 14 anbi12d h=Gi0htht10GitGit1
16 15 ralbidv h=GitT0htht1tT0GitGit1
17 11 16 anbi12d h=GihZ=0tT0htht1GiZ=0tT0GitGit1
18 17 1 elrab2 GiQGiAGiZ=0tT0GitGit1
19 9 18 sylib φi1MGiAGiZ=0tT0GitGit1
20 19 simprld φi1MGiZ=0
21 20 sumeq2dv φi=1MGiZ=i=1M0
22 fzfi 1MFin
23 olc 1MFin1M11MFin
24 sumz 1M11MFini=1M0=0
25 22 23 24 mp2b i=1M0=0
26 21 25 eqtrdi φi=1MGiZ=0
27 26 oveq2d φ1Mi=1MGiZ=1M0
28 3 nncnd φM
29 3 nnne0d φM0
30 28 29 reccld φ1M
31 30 mul01d φ1M0=0
32 8 27 31 3eqtrd φPZ=0