Metamath Proof Explorer


Theorem stoweidlem37

Description: This lemma is used to prove the existence of a function p as in Lemma 1 of BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Z is used for t_0, P is used for p, ( Gi ) is used for p__(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem37.1 Q = h A | h Z = 0 t T 0 h t h t 1
stoweidlem37.2 P = t T 1 M i = 1 M G i t
stoweidlem37.3 φ M
stoweidlem37.4 φ G : 1 M Q
stoweidlem37.5 φ f A f : T
stoweidlem37.6 φ Z T
Assertion stoweidlem37 φ P Z = 0

Proof

Step Hyp Ref Expression
1 stoweidlem37.1 Q = h A | h Z = 0 t T 0 h t h t 1
2 stoweidlem37.2 P = t T 1 M i = 1 M G i t
3 stoweidlem37.3 φ M
4 stoweidlem37.4 φ G : 1 M Q
5 stoweidlem37.5 φ f A f : T
6 stoweidlem37.6 φ Z T
7 1 2 3 4 5 stoweidlem30 φ Z T P Z = 1 M i = 1 M G i Z
8 6 7 mpdan φ P Z = 1 M i = 1 M G i Z
9 4 ffvelrnda φ i 1 M G i Q
10 fveq1 h = G i h Z = G i Z
11 10 eqeq1d h = G i h Z = 0 G i Z = 0
12 fveq1 h = G i h t = G i t
13 12 breq2d h = G i 0 h t 0 G i t
14 12 breq1d h = G i h t 1 G i t 1
15 13 14 anbi12d h = G i 0 h t h t 1 0 G i t G i t 1
16 15 ralbidv h = G i t T 0 h t h t 1 t T 0 G i t G i t 1
17 11 16 anbi12d h = G i h Z = 0 t T 0 h t h t 1 G i Z = 0 t T 0 G i t G i t 1
18 17 1 elrab2 G i Q G i A G i Z = 0 t T 0 G i t G i t 1
19 9 18 sylib φ i 1 M G i A G i Z = 0 t T 0 G i t G i t 1
20 19 simprld φ i 1 M G i Z = 0
21 20 sumeq2dv φ i = 1 M G i Z = i = 1 M 0
22 fzfi 1 M Fin
23 olc 1 M Fin 1 M 1 1 M Fin
24 sumz 1 M 1 1 M Fin i = 1 M 0 = 0
25 22 23 24 mp2b i = 1 M 0 = 0
26 21 25 syl6eq φ i = 1 M G i Z = 0
27 26 oveq2d φ 1 M i = 1 M G i Z = 1 M 0
28 3 nncnd φ M
29 3 nnne0d φ M 0
30 28 29 reccld φ 1 M
31 30 mul01d φ 1 M 0 = 0
32 8 27 31 3eqtrd φ P Z = 0