Description: This lemma is used to prove the existence of a function p as in Lemma 1 of BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Z is used for t_0, P is used for p, ( Gi ) is used for p__(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem37.1 | |
|
stoweidlem37.2 | |
||
stoweidlem37.3 | |
||
stoweidlem37.4 | |
||
stoweidlem37.5 | |
||
stoweidlem37.6 | |
||
Assertion | stoweidlem37 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem37.1 | |
|
2 | stoweidlem37.2 | |
|
3 | stoweidlem37.3 | |
|
4 | stoweidlem37.4 | |
|
5 | stoweidlem37.5 | |
|
6 | stoweidlem37.6 | |
|
7 | 1 2 3 4 5 | stoweidlem30 | |
8 | 6 7 | mpdan | |
9 | 4 | ffvelcdmda | |
10 | fveq1 | |
|
11 | 10 | eqeq1d | |
12 | fveq1 | |
|
13 | 12 | breq2d | |
14 | 12 | breq1d | |
15 | 13 14 | anbi12d | |
16 | 15 | ralbidv | |
17 | 11 16 | anbi12d | |
18 | 17 1 | elrab2 | |
19 | 9 18 | sylib | |
20 | 19 | simprld | |
21 | 20 | sumeq2dv | |
22 | fzfi | |
|
23 | olc | |
|
24 | sumz | |
|
25 | 22 23 24 | mp2b | |
26 | 21 25 | eqtrdi | |
27 | 26 | oveq2d | |
28 | 3 | nncnd | |
29 | 3 | nnne0d | |
30 | 28 29 | reccld | |
31 | 30 | mul01d | |
32 | 8 27 31 | 3eqtrd | |