Metamath Proof Explorer


Theorem stoweidlem5

Description: There exists a δ as in the proof of Lemma 1 in BrosowskiDeutsh p. 90: 0 < δ < 1 , p >= δ on T \ U . Here D is used to represent δ in the paper and Q to represent T \ U in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem5.1 tφ
stoweidlem5.2 D=ifC12C12
stoweidlem5.3 φP:T
stoweidlem5.4 φQT
stoweidlem5.5 φC+
stoweidlem5.6 φtQCPt
Assertion stoweidlem5 φdd+d<1tQdPt

Proof

Step Hyp Ref Expression
1 stoweidlem5.1 tφ
2 stoweidlem5.2 D=ifC12C12
3 stoweidlem5.3 φP:T
4 stoweidlem5.4 φQT
5 stoweidlem5.5 φC+
6 stoweidlem5.6 φtQCPt
7 halfre 12
8 halfgt0 0<12
9 7 8 elrpii 12+
10 ifcl C+12+ifC12C12+
11 5 9 10 sylancl φifC12C12+
12 2 11 eqeltrid φD+
13 12 rpred φD
14 7 a1i φ12
15 1red φ1
16 5 rpred φC
17 min2 C12ifC12C1212
18 16 7 17 sylancl φifC12C1212
19 2 18 eqbrtrid φD12
20 halflt1 12<1
21 20 a1i φ12<1
22 13 14 15 19 21 lelttrd φD<1
23 11 rpred φifC12C12
24 23 adantr φtQifC12C12
25 16 adantr φtQC
26 3 adantr φtQP:T
27 4 sselda φtQtT
28 26 27 ffvelcdmd φtQPt
29 min1 C12ifC12C12C
30 16 7 29 sylancl φifC12C12C
31 30 adantr φtQifC12C12C
32 6 r19.21bi φtQCPt
33 24 25 28 31 32 letrd φtQifC12C12Pt
34 2 33 eqbrtrid φtQDPt
35 34 ex φtQDPt
36 1 35 ralrimi φtQDPt
37 eleq1 d=Dd+D+
38 breq1 d=Dd<1D<1
39 breq1 d=DdPtDPt
40 39 ralbidv d=DtQdPttQDPt
41 37 38 40 3anbi123d d=Dd+d<1tQdPtD+D<1tQDPt
42 41 spcegv D+D+D<1tQDPtdd+d<1tQdPt
43 12 42 syl φD+D<1tQDPtdd+d<1tQdPt
44 12 22 36 43 mp3and φdd+d<1tQdPt