Description: There exists a δ as in the proof of Lemma 1 in BrosowskiDeutsh p. 90: 0 < δ < 1 , p >= δ on T \ U . Here D is used to represent δ in the paper and Q to represent T \ U in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem5.1 | |
|
stoweidlem5.2 | |
||
stoweidlem5.3 | |
||
stoweidlem5.4 | |
||
stoweidlem5.5 | |
||
stoweidlem5.6 | |
||
Assertion | stoweidlem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem5.1 | |
|
2 | stoweidlem5.2 | |
|
3 | stoweidlem5.3 | |
|
4 | stoweidlem5.4 | |
|
5 | stoweidlem5.5 | |
|
6 | stoweidlem5.6 | |
|
7 | halfre | |
|
8 | halfgt0 | |
|
9 | 7 8 | elrpii | |
10 | ifcl | |
|
11 | 5 9 10 | sylancl | |
12 | 2 11 | eqeltrid | |
13 | 12 | rpred | |
14 | 7 | a1i | |
15 | 1red | |
|
16 | 5 | rpred | |
17 | min2 | |
|
18 | 16 7 17 | sylancl | |
19 | 2 18 | eqbrtrid | |
20 | halflt1 | |
|
21 | 20 | a1i | |
22 | 13 14 15 19 21 | lelttrd | |
23 | 11 | rpred | |
24 | 23 | adantr | |
25 | 16 | adantr | |
26 | 3 | adantr | |
27 | 4 | sselda | |
28 | 26 27 | ffvelcdmd | |
29 | min1 | |
|
30 | 16 7 29 | sylancl | |
31 | 30 | adantr | |
32 | 6 | r19.21bi | |
33 | 24 25 28 31 32 | letrd | |
34 | 2 33 | eqbrtrid | |
35 | 34 | ex | |
36 | 1 35 | ralrimi | |
37 | eleq1 | |
|
38 | breq1 | |
|
39 | breq1 | |
|
40 | 39 | ralbidv | |
41 | 37 38 40 | 3anbi123d | |
42 | 41 | spcegv | |
43 | 12 42 | syl | |
44 | 12 22 36 43 | mp3and | |