Description: Lemma for subfacp1 . The function F , which swaps 1 with M and leaves all other elements alone, is a bijection of order 2 , i.e. it is its own inverse. (Contributed by Mario Carneiro, 19-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | derang.d | |
|
subfac.n | |
||
subfacp1lem.a | |
||
subfacp1lem1.n | |
||
subfacp1lem1.m | |
||
subfacp1lem1.x | |
||
subfacp1lem1.k | |
||
subfacp1lem5.b | |
||
subfacp1lem5.f | |
||
Assertion | subfacp1lem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | derang.d | |
|
2 | subfac.n | |
|
3 | subfacp1lem.a | |
|
4 | subfacp1lem1.n | |
|
5 | subfacp1lem1.m | |
|
6 | subfacp1lem1.x | |
|
7 | subfacp1lem1.k | |
|
8 | subfacp1lem5.b | |
|
9 | subfacp1lem5.f | |
|
10 | f1oi | |
|
11 | 10 | a1i | |
12 | 1 2 3 4 5 6 7 9 11 | subfacp1lem2a | |
13 | 12 | simp1d | |
14 | f1ocnv | |
|
15 | f1ofn | |
|
16 | 13 14 15 | 3syl | |
17 | f1ofn | |
|
18 | 13 17 | syl | |
19 | 1 2 3 4 5 6 7 | subfacp1lem1 | |
20 | 19 | simp2d | |
21 | 20 | eleq2d | |
22 | 21 | biimpar | |
23 | elun | |
|
24 | 22 23 | sylib | |
25 | 1 2 3 4 5 6 7 9 11 | subfacp1lem2b | |
26 | fvresi | |
|
27 | 26 | adantl | |
28 | 25 27 | eqtrd | |
29 | 28 | fveq2d | |
30 | 29 28 | eqtrd | |
31 | vex | |
|
32 | 31 | elpr | |
33 | 12 | simp2d | |
34 | 33 | fveq2d | |
35 | 12 | simp3d | |
36 | 34 35 | eqtrd | |
37 | 2fveq3 | |
|
38 | id | |
|
39 | 37 38 | eqeq12d | |
40 | 36 39 | syl5ibrcom | |
41 | 35 | fveq2d | |
42 | 41 33 | eqtrd | |
43 | 2fveq3 | |
|
44 | id | |
|
45 | 43 44 | eqeq12d | |
46 | 42 45 | syl5ibrcom | |
47 | 40 46 | jaod | |
48 | 47 | imp | |
49 | 32 48 | sylan2b | |
50 | 30 49 | jaodan | |
51 | 24 50 | syldan | |
52 | 13 | adantr | |
53 | f1of | |
|
54 | 13 53 | syl | |
55 | 54 | ffvelcdmda | |
56 | f1ocnvfv | |
|
57 | 52 55 56 | syl2anc | |
58 | 51 57 | mpd | |
59 | 16 18 58 | eqfnfvd | |