Metamath Proof Explorer


Theorem subfacp1lem4

Description: Lemma for subfacp1 . The function F , which swaps 1 with M and leaves all other elements alone, is a bijection of order 2 , i.e. it is its own inverse. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses derang.d D=xFinf|f:x1-1 ontoxyxfyy
subfac.n S=n0D1n
subfacp1lem.a A=f|f:1N+11-1 onto1N+1y1N+1fyy
subfacp1lem1.n φN
subfacp1lem1.m φM2N+1
subfacp1lem1.x MV
subfacp1lem1.k K=2N+1M
subfacp1lem5.b B=gA|g1=MgM1
subfacp1lem5.f F=IK1MM1
Assertion subfacp1lem4 φF-1=F

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 subfac.n S=n0D1n
3 subfacp1lem.a A=f|f:1N+11-1 onto1N+1y1N+1fyy
4 subfacp1lem1.n φN
5 subfacp1lem1.m φM2N+1
6 subfacp1lem1.x MV
7 subfacp1lem1.k K=2N+1M
8 subfacp1lem5.b B=gA|g1=MgM1
9 subfacp1lem5.f F=IK1MM1
10 f1oi IK:K1-1 ontoK
11 10 a1i φIK:K1-1 ontoK
12 1 2 3 4 5 6 7 9 11 subfacp1lem2a φF:1N+11-1 onto1N+1F1=MFM=1
13 12 simp1d φF:1N+11-1 onto1N+1
14 f1ocnv F:1N+11-1 onto1N+1F-1:1N+11-1 onto1N+1
15 f1ofn F-1:1N+11-1 onto1N+1F-1Fn1N+1
16 13 14 15 3syl φF-1Fn1N+1
17 f1ofn F:1N+11-1 onto1N+1FFn1N+1
18 13 17 syl φFFn1N+1
19 1 2 3 4 5 6 7 subfacp1lem1 φK1M=K1M=1N+1K=N1
20 19 simp2d φK1M=1N+1
21 20 eleq2d φxK1Mx1N+1
22 21 biimpar φx1N+1xK1M
23 elun xK1MxKx1M
24 22 23 sylib φx1N+1xKx1M
25 1 2 3 4 5 6 7 9 11 subfacp1lem2b φxKFx=IKx
26 fvresi xKIKx=x
27 26 adantl φxKIKx=x
28 25 27 eqtrd φxKFx=x
29 28 fveq2d φxKFFx=Fx
30 29 28 eqtrd φxKFFx=x
31 vex xV
32 31 elpr x1Mx=1x=M
33 12 simp2d φF1=M
34 33 fveq2d φFF1=FM
35 12 simp3d φFM=1
36 34 35 eqtrd φFF1=1
37 2fveq3 x=1FFx=FF1
38 id x=1x=1
39 37 38 eqeq12d x=1FFx=xFF1=1
40 36 39 syl5ibrcom φx=1FFx=x
41 35 fveq2d φFFM=F1
42 41 33 eqtrd φFFM=M
43 2fveq3 x=MFFx=FFM
44 id x=Mx=M
45 43 44 eqeq12d x=MFFx=xFFM=M
46 42 45 syl5ibrcom φx=MFFx=x
47 40 46 jaod φx=1x=MFFx=x
48 47 imp φx=1x=MFFx=x
49 32 48 sylan2b φx1MFFx=x
50 30 49 jaodan φxKx1MFFx=x
51 24 50 syldan φx1N+1FFx=x
52 13 adantr φx1N+1F:1N+11-1 onto1N+1
53 f1of F:1N+11-1 onto1N+1F:1N+11N+1
54 13 53 syl φF:1N+11N+1
55 54 ffvelcdmda φx1N+1Fx1N+1
56 f1ocnvfv F:1N+11-1 onto1N+1Fx1N+1FFx=xF-1x=Fx
57 52 55 56 syl2anc φx1N+1FFx=xF-1x=Fx
58 51 57 mpd φx1N+1F-1x=Fx
59 16 18 58 eqfnfvd φF-1=F