Description: The order of an element is the same in a submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015) (Proof shortened by AV, 5-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | submod.h | |
|
submod.o | |
||
submod.p | |
||
Assertion | submod | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submod.h | |
|
2 | submod.o | |
|
3 | submod.p | |
|
4 | simpll | |
|
5 | nnnn0 | |
|
6 | 5 | adantl | |
7 | simplr | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 8 1 9 | submmulg | |
11 | 4 6 7 10 | syl3anc | |
12 | eqid | |
|
13 | 1 12 | subm0 | |
14 | 13 | ad2antrr | |
15 | 11 14 | eqeq12d | |
16 | 15 | rabbidva | |
17 | eqeq1 | |
|
18 | infeq1 | |
|
19 | 17 18 | ifbieq2d | |
20 | 16 19 | syl | |
21 | eqid | |
|
22 | 21 | submss | |
23 | 22 | sselda | |
24 | eqid | |
|
25 | 21 8 12 2 24 | odval | |
26 | 23 25 | syl | |
27 | simpr | |
|
28 | 22 | adantr | |
29 | 1 21 | ressbas2 | |
30 | 28 29 | syl | |
31 | 27 30 | eleqtrd | |
32 | eqid | |
|
33 | eqid | |
|
34 | eqid | |
|
35 | 32 9 33 3 34 | odval | |
36 | 31 35 | syl | |
37 | 20 26 36 | 3eqtr4d | |