Metamath Proof Explorer


Theorem submod

Description: The order of an element is the same in a submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015) (Proof shortened by AV, 5-Oct-2020)

Ref Expression
Hypotheses submod.h H=G𝑠Y
submod.o O=odG
submod.p P=odH
Assertion submod YSubMndGAYOA=PA

Proof

Step Hyp Ref Expression
1 submod.h H=G𝑠Y
2 submod.o O=odG
3 submod.p P=odH
4 simpll YSubMndGAYxYSubMndG
5 nnnn0 xx0
6 5 adantl YSubMndGAYxx0
7 simplr YSubMndGAYxAY
8 eqid G=G
9 eqid H=H
10 8 1 9 submmulg YSubMndGx0AYxGA=xHA
11 4 6 7 10 syl3anc YSubMndGAYxxGA=xHA
12 eqid 0G=0G
13 1 12 subm0 YSubMndG0G=0H
14 13 ad2antrr YSubMndGAYx0G=0H
15 11 14 eqeq12d YSubMndGAYxxGA=0GxHA=0H
16 15 rabbidva YSubMndGAYx|xGA=0G=x|xHA=0H
17 eqeq1 x|xGA=0G=x|xHA=0Hx|xGA=0G=x|xHA=0H=
18 infeq1 x|xGA=0G=x|xHA=0Hsupx|xGA=0G<=supx|xHA=0H<
19 17 18 ifbieq2d x|xGA=0G=x|xHA=0Hifx|xGA=0G=0supx|xGA=0G<=ifx|xHA=0H=0supx|xHA=0H<
20 16 19 syl YSubMndGAYifx|xGA=0G=0supx|xGA=0G<=ifx|xHA=0H=0supx|xHA=0H<
21 eqid BaseG=BaseG
22 21 submss YSubMndGYBaseG
23 22 sselda YSubMndGAYABaseG
24 eqid x|xGA=0G=x|xGA=0G
25 21 8 12 2 24 odval ABaseGOA=ifx|xGA=0G=0supx|xGA=0G<
26 23 25 syl YSubMndGAYOA=ifx|xGA=0G=0supx|xGA=0G<
27 simpr YSubMndGAYAY
28 22 adantr YSubMndGAYYBaseG
29 1 21 ressbas2 YBaseGY=BaseH
30 28 29 syl YSubMndGAYY=BaseH
31 27 30 eleqtrd YSubMndGAYABaseH
32 eqid BaseH=BaseH
33 eqid 0H=0H
34 eqid x|xHA=0H=x|xHA=0H
35 32 9 33 3 34 odval ABaseHPA=ifx|xHA=0H=0supx|xHA=0H<
36 31 35 syl YSubMndGAYPA=ifx|xHA=0H=0supx|xHA=0H<
37 20 26 36 3eqtr4d YSubMndGAYOA=PA