| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subumgredg2.v |  | 
						
							| 2 |  | subumgredg2.i |  | 
						
							| 3 |  | fveqeq2 |  | 
						
							| 4 |  | umgruhgr |  | 
						
							| 5 | 4 | 3ad2ant2 |  | 
						
							| 6 |  | simp1 |  | 
						
							| 7 |  | simp3 |  | 
						
							| 8 | 1 2 5 6 7 | subgruhgredgd |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 9 | uhgrfun |  | 
						
							| 11 | 4 10 | syl |  | 
						
							| 12 | 11 | 3ad2ant2 |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 13 14 2 9 15 | subgrprop2 |  | 
						
							| 17 | 16 | simp2d |  | 
						
							| 18 | 17 | 3ad2ant1 |  | 
						
							| 19 |  | funssfv |  | 
						
							| 20 | 19 | eqcomd |  | 
						
							| 21 | 12 18 7 20 | syl3anc |  | 
						
							| 22 | 21 | fveq2d |  | 
						
							| 23 |  | simp2 |  | 
						
							| 24 | 2 | dmeqi |  | 
						
							| 25 | 24 | eleq2i |  | 
						
							| 26 |  | subgreldmiedg |  | 
						
							| 27 | 26 | ex |  | 
						
							| 28 | 25 27 | biimtrid |  | 
						
							| 29 | 28 | a1d |  | 
						
							| 30 | 29 | 3imp |  | 
						
							| 31 | 14 9 | umgredg2 |  | 
						
							| 32 | 23 30 31 | syl2anc |  | 
						
							| 33 | 22 32 | eqtrd |  | 
						
							| 34 | 3 8 33 | elrabd |  | 
						
							| 35 |  | prprrab |  | 
						
							| 36 | 34 35 | eleqtrdi |  |