Metamath Proof Explorer


Theorem subumgredg2

Description: An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020)

Ref Expression
Hypotheses subumgredg2.v V=VtxS
subumgredg2.i I=iEdgS
Assertion subumgredg2 SSubGraphGGUMGraphXdomIIXe𝒫V|e=2

Proof

Step Hyp Ref Expression
1 subumgredg2.v V=VtxS
2 subumgredg2.i I=iEdgS
3 fveqeq2 e=IXe=2IX=2
4 umgruhgr GUMGraphGUHGraph
5 4 3ad2ant2 SSubGraphGGUMGraphXdomIGUHGraph
6 simp1 SSubGraphGGUMGraphXdomISSubGraphG
7 simp3 SSubGraphGGUMGraphXdomIXdomI
8 1 2 5 6 7 subgruhgredgd SSubGraphGGUMGraphXdomIIX𝒫V
9 eqid iEdgG=iEdgG
10 9 uhgrfun GUHGraphFuniEdgG
11 4 10 syl GUMGraphFuniEdgG
12 11 3ad2ant2 SSubGraphGGUMGraphXdomIFuniEdgG
13 eqid VtxS=VtxS
14 eqid VtxG=VtxG
15 eqid EdgS=EdgS
16 13 14 2 9 15 subgrprop2 SSubGraphGVtxSVtxGIiEdgGEdgS𝒫VtxS
17 16 simp2d SSubGraphGIiEdgG
18 17 3ad2ant1 SSubGraphGGUMGraphXdomIIiEdgG
19 funssfv FuniEdgGIiEdgGXdomIiEdgGX=IX
20 19 eqcomd FuniEdgGIiEdgGXdomIIX=iEdgGX
21 12 18 7 20 syl3anc SSubGraphGGUMGraphXdomIIX=iEdgGX
22 21 fveq2d SSubGraphGGUMGraphXdomIIX=iEdgGX
23 simp2 SSubGraphGGUMGraphXdomIGUMGraph
24 2 dmeqi domI=domiEdgS
25 24 eleq2i XdomIXdomiEdgS
26 subgreldmiedg SSubGraphGXdomiEdgSXdomiEdgG
27 26 ex SSubGraphGXdomiEdgSXdomiEdgG
28 25 27 biimtrid SSubGraphGXdomIXdomiEdgG
29 28 a1d SSubGraphGGUMGraphXdomIXdomiEdgG
30 29 3imp SSubGraphGGUMGraphXdomIXdomiEdgG
31 14 9 umgredg2 GUMGraphXdomiEdgGiEdgGX=2
32 23 30 31 syl2anc SSubGraphGGUMGraphXdomIiEdgGX=2
33 22 32 eqtrd SSubGraphGGUMGraphXdomIIX=2
34 3 8 33 elrabd SSubGraphGGUMGraphXdomIIXe𝒫V|e=2
35 prprrab e𝒫V|e=2=e𝒫V|e=2
36 34 35 eleqtrdi SSubGraphGGUMGraphXdomIIXe𝒫V|e=2