Description: Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013) (Proof shortened by Mario Carneiro, 27-Apr-2015) Avoid ax-pow . (Revised by BTernaryTau, 4-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | sucdom2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom | |
|
2 | brdomi | |
|
3 | 1 2 | syl | |
4 | vex | |
|
5 | 4 | rnex | |
6 | f1f1orn | |
|
7 | 6 | adantl | |
8 | f1of1 | |
|
9 | 7 8 | syl | |
10 | f1dom3g | |
|
11 | 4 5 9 10 | mp3an12i | |
12 | sdomnen | |
|
13 | 12 | adantr | |
14 | ssdif0 | |
|
15 | simplr | |
|
16 | f1f | |
|
17 | 16 | frnd | |
18 | 15 17 | syl | |
19 | simpr | |
|
20 | 18 19 | eqssd | |
21 | dff1o5 | |
|
22 | 15 20 21 | sylanbrc | |
23 | f1oen3g | |
|
24 | 4 22 23 | sylancr | |
25 | 24 | ex | |
26 | 14 25 | biimtrrid | |
27 | 13 26 | mtod | |
28 | neq0 | |
|
29 | 27 28 | sylib | |
30 | snssi | |
|
31 | relsdom | |
|
32 | 31 | brrelex1i | |
33 | 32 | adantr | |
34 | vex | |
|
35 | en2sn | |
|
36 | 33 34 35 | sylancl | |
37 | 31 | brrelex2i | |
38 | 37 | adantr | |
39 | difexg | |
|
40 | snfi | |
|
41 | ssdomfi2 | |
|
42 | 40 41 | mp3an1 | |
43 | 42 | ex | |
44 | 38 39 43 | 3syl | |
45 | endom | |
|
46 | domtrfi | |
|
47 | 40 46 | mp3an1 | |
48 | 45 47 | sylan | |
49 | 36 44 48 | syl6an | |
50 | 30 49 | syl5 | |
51 | 50 | exlimdv | |
52 | 29 51 | mpd | |
53 | disjdif | |
|
54 | 53 | a1i | |
55 | undom | |
|
56 | 11 52 54 55 | syl21anc | |
57 | df-suc | |
|
58 | 57 | a1i | |
59 | undif2 | |
|
60 | 17 | adantl | |
61 | ssequn1 | |
|
62 | 60 61 | sylib | |
63 | 59 62 | eqtr2id | |
64 | 56 58 63 | 3brtr4d | |
65 | 3 64 | exlimddv | |