Metamath Proof Explorer


Theorem sucdom2

Description: Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013) (Proof shortened by Mario Carneiro, 27-Apr-2015) Avoid ax-pow . (Revised by BTernaryTau, 4-Dec-2024)

Ref Expression
Assertion sucdom2 ABsucAB

Proof

Step Hyp Ref Expression
1 sdomdom ABAB
2 brdomi ABff:A1-1B
3 1 2 syl ABff:A1-1B
4 vex fV
5 4 rnex ranfV
6 f1f1orn f:A1-1Bf:A1-1 ontoranf
7 6 adantl ABf:A1-1Bf:A1-1 ontoranf
8 f1of1 f:A1-1 ontoranff:A1-1ranf
9 7 8 syl ABf:A1-1Bf:A1-1ranf
10 f1dom3g fVranfVf:A1-1ranfAranf
11 4 5 9 10 mp3an12i ABf:A1-1BAranf
12 sdomnen AB¬AB
13 12 adantr ABf:A1-1B¬AB
14 ssdif0 BranfBranf=
15 simplr ABf:A1-1BBranff:A1-1B
16 f1f f:A1-1Bf:AB
17 16 frnd f:A1-1BranfB
18 15 17 syl ABf:A1-1BBranfranfB
19 simpr ABf:A1-1BBranfBranf
20 18 19 eqssd ABf:A1-1BBranfranf=B
21 dff1o5 f:A1-1 ontoBf:A1-1Branf=B
22 15 20 21 sylanbrc ABf:A1-1BBranff:A1-1 ontoB
23 f1oen3g fVf:A1-1 ontoBAB
24 4 22 23 sylancr ABf:A1-1BBranfAB
25 24 ex ABf:A1-1BBranfAB
26 14 25 biimtrrid ABf:A1-1BBranf=AB
27 13 26 mtod ABf:A1-1B¬Branf=
28 neq0 ¬Branf=wwBranf
29 27 28 sylib ABf:A1-1BwwBranf
30 snssi wBranfwBranf
31 relsdom Rel
32 31 brrelex1i ABAV
33 32 adantr ABf:A1-1BAV
34 vex wV
35 en2sn AVwVAw
36 33 34 35 sylancl ABf:A1-1BAw
37 31 brrelex2i ABBV
38 37 adantr ABf:A1-1BBV
39 difexg BVBranfV
40 snfi wFin
41 ssdomfi2 wFinBranfVwBranfwBranf
42 40 41 mp3an1 BranfVwBranfwBranf
43 42 ex BranfVwBranfwBranf
44 38 39 43 3syl ABf:A1-1BwBranfwBranf
45 endom AwAw
46 domtrfi wFinAwwBranfABranf
47 40 46 mp3an1 AwwBranfABranf
48 45 47 sylan AwwBranfABranf
49 36 44 48 syl6an ABf:A1-1BwBranfABranf
50 30 49 syl5 ABf:A1-1BwBranfABranf
51 50 exlimdv ABf:A1-1BwwBranfABranf
52 29 51 mpd ABf:A1-1BABranf
53 disjdif ranfBranf=
54 53 a1i ABf:A1-1BranfBranf=
55 undom AranfABranfranfBranf=AAranfBranf
56 11 52 54 55 syl21anc ABf:A1-1BAAranfBranf
57 df-suc sucA=AA
58 57 a1i ABf:A1-1BsucA=AA
59 undif2 ranfBranf=ranfB
60 17 adantl ABf:A1-1BranfB
61 ssequn1 ranfBranfB=B
62 60 61 sylib ABf:A1-1BranfB=B
63 59 62 eqtr2id ABf:A1-1BB=ranfBranf
64 56 58 63 3brtr4d ABf:A1-1BsucAB
65 3 64 exlimddv ABsucAB