Metamath Proof Explorer


Theorem sumeven

Description: If every term in a sum is even, then so is the sum. (Contributed by AV, 14-Aug-2021)

Ref Expression
Hypotheses sumeven.a φAFin
sumeven.b φkAB
sumeven.e φkA2B
Assertion sumeven φ2kAB

Proof

Step Hyp Ref Expression
1 sumeven.a φAFin
2 sumeven.b φkAB
3 sumeven.e φkA2B
4 sumeq1 x=kxB=kB
5 4 breq2d x=2kxB2kB
6 sumeq1 x=ykxB=kyB
7 6 breq2d x=y2kxB2kyB
8 sumeq1 x=yzkxB=kyzB
9 8 breq2d x=yz2kxB2kyzB
10 sumeq1 x=AkxB=kAB
11 10 breq2d x=A2kxB2kAB
12 z0even 20
13 sum0 kB=0
14 12 13 breqtrri 2kB
15 14 a1i φ2kB
16 2z 2
17 16 a1i φyAzAy2
18 ssfi AFinyAyFin
19 18 expcom yAAFinyFin
20 19 adantr yAzAyAFinyFin
21 1 20 mpan9 φyAzAyyFin
22 simpll φyAzAykyφ
23 ssel yAkykA
24 23 adantr yAzAykykA
25 24 adantl φyAzAykykA
26 25 imp φyAzAykykA
27 22 26 2 syl2anc φyAzAykyB
28 21 27 fsumzcl φyAzAykyB
29 eldifi zAyzA
30 29 adantl yAzAyzA
31 30 adantl φyAzAyzA
32 2 adantlr φyAzAykAB
33 32 ralrimiva φyAzAykAB
34 rspcsbela zAkABz/kB
35 31 33 34 syl2anc φyAzAyz/kB
36 17 28 35 3jca φyAzAy2kyBz/kB
37 36 adantr φyAzAy2kyB2kyBz/kB
38 3 ralrimiva φkA2B
39 nfcv _k2
40 nfcv _k
41 nfcsb1v _kz/kB
42 39 40 41 nfbr k2z/kB
43 csbeq1a k=zB=z/kB
44 43 breq2d k=z2B2z/kB
45 42 44 rspc zAkA2B2z/kB
46 29 38 45 syl2imc φzAy2z/kB
47 46 a1d φyAzAy2z/kB
48 47 imp32 φyAzAy2z/kB
49 48 anim1ci φyAzAy2kyB2kyB2z/kB
50 dvds2add 2kyBz/kB2kyB2z/kB2kyB+z/kB
51 37 49 50 sylc φyAzAy2kyB2kyB+z/kB
52 vex zV
53 52 a1i φyAzAyzV
54 eldif zAyzA¬zy
55 df-nel zy¬zy
56 55 biimpri ¬zyzy
57 54 56 simplbiim zAyzy
58 57 adantl yAzAyzy
59 58 adantl φyAzAyzy
60 simpll φyAzAykyzφ
61 elun kyzkykz
62 24 com12 kyyAzAykA
63 elsni kzk=z
64 eleq1w k=zkAzA
65 30 64 imbitrrid k=zyAzAykA
66 63 65 syl kzyAzAykA
67 62 66 jaoi kykzyAzAykA
68 67 com12 yAzAykykzkA
69 61 68 biimtrid yAzAykyzkA
70 69 adantl φyAzAykyzkA
71 70 imp φyAzAykyzkA
72 60 71 2 syl2anc φyAzAykyzB
73 72 ralrimiva φyAzAykyzB
74 fsumsplitsnun yFinzVzykyzBkyzB=kyB+z/kB
75 21 53 59 73 74 syl121anc φyAzAykyzB=kyB+z/kB
76 75 adantr φyAzAy2kyBkyzB=kyB+z/kB
77 51 76 breqtrrd φyAzAy2kyB2kyzB
78 77 ex φyAzAy2kyB2kyzB
79 5 7 9 11 15 78 1 findcard2d φ2kAB