Metamath Proof Explorer


Theorem swrdfv2

Description: A symbol in an extracted subword, indexed using the word's indices. (Contributed by AV, 5-May-2020)

Ref Expression
Assertion swrdfv2 SWordVF0LFLSXF..^LSsubstrFLXF=SX

Proof

Step Hyp Ref Expression
1 simp1 SWordVF0LFLSSWordV
2 simpl F0LFF0
3 eluznn0 F0LFL0
4 eluzle LFFL
5 4 adantl F0LFFL
6 2 3 5 3jca F0LFF0L0FL
7 6 3ad2ant2 SWordVF0LFLSF0L0FL
8 elfz2nn0 F0LF0L0FL
9 7 8 sylibr SWordVF0LFLSF0L
10 3 anim1i F0LFLSL0LS
11 10 3adant1 SWordVF0LFLSL0LS
12 lencl SWordVS0
13 12 3ad2ant1 SWordVF0LFLSS0
14 fznn0 S0L0SL0LS
15 13 14 syl SWordVF0LFLSL0SL0LS
16 11 15 mpbird SWordVF0LFLSL0S
17 1 9 16 3jca SWordVF0LFLSSWordVF0LL0S
18 17 adantr SWordVF0LFLSXF..^LSWordVF0LL0S
19 nn0cn F0F
20 eluzelcn LFL
21 pncan3 FLF+L-F=L
22 19 20 21 syl2an F0LFF+L-F=L
23 22 eqcomd F0LFL=F+L-F
24 23 3ad2ant2 SWordVF0LFLSL=F+L-F
25 24 oveq2d SWordVF0LFLSF..^L=F..^F+L-F
26 25 eleq2d SWordVF0LFLSXF..^LXF..^F+L-F
27 26 biimpa SWordVF0LFLSXF..^LXF..^F+L-F
28 eluzelz LFL
29 28 adantl F0LFL
30 nn0z F0F
31 30 adantr F0LFF
32 29 31 zsubcld F0LFLF
33 32 3ad2ant2 SWordVF0LFLSLF
34 33 adantr SWordVF0LFLSXF..^LLF
35 fzosubel3 XF..^F+L-FLFXF0..^LF
36 27 34 35 syl2anc SWordVF0LFLSXF..^LXF0..^LF
37 swrdfv SWordVF0LL0SXF0..^LFSsubstrFLXF=SX-F+F
38 18 36 37 syl2anc SWordVF0LFLSXF..^LSsubstrFLXF=SX-F+F
39 elfzoelz XF..^LX
40 39 zcnd XF..^LX
41 19 adantr F0LFF
42 41 3ad2ant2 SWordVF0LFLSF
43 npcan XFX-F+F=X
44 40 42 43 syl2anr SWordVF0LFLSXF..^LX-F+F=X
45 44 fveq2d SWordVF0LFLSXF..^LSX-F+F=SX
46 38 45 eqtrd SWordVF0LFLSXF..^LSsubstrFLXF=SX