Metamath Proof Explorer


Theorem sxbrsigalem3

Description: The sigma-algebra generated by the closed half-spaces of ( RR X. RR ) is a subset of the sigma-algebra generated by the closed sets of ( RR X. RR ) . (Contributed by Thierry Arnoux, 11-Oct-2017)

Ref Expression
Hypothesis sxbrsiga.0 J=topGenran.
Assertion sxbrsigalem3 𝛔ranee+∞×ranf×f+∞𝛔ClsdJ×tJ

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 sxbrsigalem0 ranee+∞×ranf×f+∞=2
3 retop topGenran.Top
4 1 3 eqeltri JTop
5 4 4 txtopi J×tJTop
6 uniretop =topGenran.
7 1 unieqi J=topGenran.
8 6 7 eqtr4i =J
9 4 4 8 8 txunii 2=J×tJ
10 5 9 unicls ClsdJ×tJ=2
11 2 10 eqtr4i ranee+∞×ranf×f+∞=ClsdJ×tJ
12 ovex e+∞V
13 reex V
14 12 13 xpex e+∞×V
15 eqid ee+∞×=ee+∞×
16 14 15 fnmpti ee+∞×Fn
17 oveq1 e=ue+∞=u+∞
18 17 xpeq1d e=ue+∞×=u+∞×
19 ovex u+∞V
20 19 13 xpex u+∞×V
21 18 15 20 fvmpt uee+∞×u=u+∞×
22 icopnfcld uu+∞ClsdtopGenran.
23 1 fveq2i ClsdJ=ClsdtopGenran.
24 22 23 eleqtrrdi uu+∞ClsdJ
25 dif0 =
26 0opn JTopJ
27 4 26 ax-mp J
28 8 opncld JTopJClsdJ
29 4 27 28 mp2an ClsdJ
30 25 29 eqeltrri ClsdJ
31 txcld u+∞ClsdJClsdJu+∞×ClsdJ×tJ
32 24 30 31 sylancl uu+∞×ClsdJ×tJ
33 21 32 eqeltrd uee+∞×uClsdJ×tJ
34 33 rgen uee+∞×uClsdJ×tJ
35 fnfvrnss ee+∞×Fnuee+∞×uClsdJ×tJranee+∞×ClsdJ×tJ
36 16 34 35 mp2an ranee+∞×ClsdJ×tJ
37 ovex f+∞V
38 13 37 xpex ×f+∞V
39 eqid f×f+∞=f×f+∞
40 38 39 fnmpti f×f+∞Fn
41 oveq1 f=vf+∞=v+∞
42 41 xpeq2d f=v×f+∞=×v+∞
43 ovex v+∞V
44 13 43 xpex ×v+∞V
45 42 39 44 fvmpt vf×f+∞v=×v+∞
46 icopnfcld vv+∞ClsdtopGenran.
47 46 23 eleqtrrdi vv+∞ClsdJ
48 txcld ClsdJv+∞ClsdJ×v+∞ClsdJ×tJ
49 30 47 48 sylancr v×v+∞ClsdJ×tJ
50 45 49 eqeltrd vf×f+∞vClsdJ×tJ
51 50 rgen vf×f+∞vClsdJ×tJ
52 fnfvrnss f×f+∞Fnvf×f+∞vClsdJ×tJranf×f+∞ClsdJ×tJ
53 40 51 52 mp2an ranf×f+∞ClsdJ×tJ
54 36 53 unssi ranee+∞×ranf×f+∞ClsdJ×tJ
55 fvex ClsdJ×tJV
56 sssigagen ClsdJ×tJVClsdJ×tJ𝛔ClsdJ×tJ
57 55 56 ax-mp ClsdJ×tJ𝛔ClsdJ×tJ
58 54 57 sstri ranee+∞×ranf×f+∞𝛔ClsdJ×tJ
59 sigagenss2 ranee+∞×ranf×f+∞=ClsdJ×tJranee+∞×ranf×f+∞𝛔ClsdJ×tJClsdJ×tJV𝛔ranee+∞×ranf×f+∞𝛔ClsdJ×tJ
60 11 58 55 59 mp3an 𝛔ranee+∞×ranf×f+∞𝛔ClsdJ×tJ