Metamath Proof Explorer


Theorem symgfcoeu

Description: Uniqueness property of permutations. (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypothesis symgfcoeu.g G=BaseSymGrpD
Assertion symgfcoeu DVPGQG∃!pGQ=Pp

Proof

Step Hyp Ref Expression
1 symgfcoeu.g G=BaseSymGrpD
2 eqid SymGrpD=SymGrpD
3 eqid invgSymGrpD=invgSymGrpD
4 2 1 3 symginv PGinvgSymGrpDP=P-1
5 4 3ad2ant2 DVPGQGinvgSymGrpDP=P-1
6 2 symggrp DVSymGrpDGrp
7 6 3ad2ant1 DVPGQGSymGrpDGrp
8 simp2 DVPGQGPG
9 1 3 grpinvcl SymGrpDGrpPGinvgSymGrpDPG
10 7 8 9 syl2anc DVPGQGinvgSymGrpDPG
11 5 10 eqeltrrd DVPGQGP-1G
12 simp3 DVPGQGQG
13 eqid +SymGrpD=+SymGrpD
14 2 1 13 symgov P-1GQGP-1+SymGrpDQ=P-1Q
15 2 1 13 symgcl P-1GQGP-1+SymGrpDQG
16 14 15 eqeltrrd P-1GQGP-1QG
17 11 12 16 syl2anc DVPGQGP-1QG
18 coass PP-1Q=PP-1Q
19 2 1 symgbasf1o PGP:D1-1 ontoD
20 f1ococnv2 P:D1-1 ontoDPP-1=ID
21 8 19 20 3syl DVPGQGPP-1=ID
22 21 coeq1d DVPGQGPP-1Q=IDQ
23 18 22 eqtr3id DVPGQGPP-1Q=IDQ
24 2 1 symgbasf1o QGQ:D1-1 ontoD
25 f1of Q:D1-1 ontoDQ:DD
26 12 24 25 3syl DVPGQGQ:DD
27 fcoi2 Q:DDIDQ=Q
28 26 27 syl DVPGQGIDQ=Q
29 23 28 eqtr2d DVPGQGQ=PP-1Q
30 simpr DVPGQGpGQ=PpQ=Pp
31 30 coeq2d DVPGQGpGQ=PpP-1Q=P-1Pp
32 coass P-1Pp=P-1Pp
33 f1ococnv1 P:D1-1 ontoDP-1P=ID
34 8 19 33 3syl DVPGQGP-1P=ID
35 34 coeq1d DVPGQGP-1Pp=IDp
36 35 ad2antrr DVPGQGpGQ=PpP-1Pp=IDp
37 32 36 eqtr3id DVPGQGpGQ=PpP-1Pp=IDp
38 simplr DVPGQGpGQ=PppG
39 2 1 symgbasf1o pGp:D1-1 ontoD
40 f1of p:D1-1 ontoDp:DD
41 38 39 40 3syl DVPGQGpGQ=Ppp:DD
42 fcoi2 p:DDIDp=p
43 41 42 syl DVPGQGpGQ=PpIDp=p
44 31 37 43 3eqtrrd DVPGQGpGQ=Ppp=P-1Q
45 44 ex DVPGQGpGQ=Ppp=P-1Q
46 45 ralrimiva DVPGQGpGQ=Ppp=P-1Q
47 coeq2 p=P-1QPp=PP-1Q
48 47 eqeq2d p=P-1QQ=PpQ=PP-1Q
49 48 eqreu P-1QGQ=PP-1QpGQ=Ppp=P-1Q∃!pGQ=Pp
50 17 29 46 49 syl3anc DVPGQG∃!pGQ=Pp