Description: Uniqueness property of permutations. (Contributed by Thierry Arnoux, 22-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | symgfcoeu.g | |
|
Assertion | symgfcoeu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgfcoeu.g | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 1 3 | symginv | |
5 | 4 | 3ad2ant2 | |
6 | 2 | symggrp | |
7 | 6 | 3ad2ant1 | |
8 | simp2 | |
|
9 | 1 3 | grpinvcl | |
10 | 7 8 9 | syl2anc | |
11 | 5 10 | eqeltrrd | |
12 | simp3 | |
|
13 | eqid | |
|
14 | 2 1 13 | symgov | |
15 | 2 1 13 | symgcl | |
16 | 14 15 | eqeltrrd | |
17 | 11 12 16 | syl2anc | |
18 | coass | |
|
19 | 2 1 | symgbasf1o | |
20 | f1ococnv2 | |
|
21 | 8 19 20 | 3syl | |
22 | 21 | coeq1d | |
23 | 18 22 | eqtr3id | |
24 | 2 1 | symgbasf1o | |
25 | f1of | |
|
26 | 12 24 25 | 3syl | |
27 | fcoi2 | |
|
28 | 26 27 | syl | |
29 | 23 28 | eqtr2d | |
30 | simpr | |
|
31 | 30 | coeq2d | |
32 | coass | |
|
33 | f1ococnv1 | |
|
34 | 8 19 33 | 3syl | |
35 | 34 | coeq1d | |
36 | 35 | ad2antrr | |
37 | 32 36 | eqtr3id | |
38 | simplr | |
|
39 | 2 1 | symgbasf1o | |
40 | f1of | |
|
41 | 38 39 40 | 3syl | |
42 | fcoi2 | |
|
43 | 41 42 | syl | |
44 | 31 37 43 | 3eqtrrd | |
45 | 44 | ex | |
46 | 45 | ralrimiva | |
47 | coeq2 | |
|
48 | 47 | eqeq2d | |
49 | 48 | eqreu | |
50 | 17 29 46 49 | syl3anc | |