Metamath Proof Explorer


Theorem symgfcoeu

Description: Uniqueness property of permutations. (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypothesis symgfcoeu.g G = Base SymGrp D
Assertion symgfcoeu D V P G Q G ∃! p G Q = P p

Proof

Step Hyp Ref Expression
1 symgfcoeu.g G = Base SymGrp D
2 eqid SymGrp D = SymGrp D
3 eqid inv g SymGrp D = inv g SymGrp D
4 2 1 3 symginv P G inv g SymGrp D P = P -1
5 4 3ad2ant2 D V P G Q G inv g SymGrp D P = P -1
6 2 symggrp D V SymGrp D Grp
7 6 3ad2ant1 D V P G Q G SymGrp D Grp
8 simp2 D V P G Q G P G
9 1 3 grpinvcl SymGrp D Grp P G inv g SymGrp D P G
10 7 8 9 syl2anc D V P G Q G inv g SymGrp D P G
11 5 10 eqeltrrd D V P G Q G P -1 G
12 simp3 D V P G Q G Q G
13 eqid + SymGrp D = + SymGrp D
14 2 1 13 symgov P -1 G Q G P -1 + SymGrp D Q = P -1 Q
15 2 1 13 symgcl P -1 G Q G P -1 + SymGrp D Q G
16 14 15 eqeltrrd P -1 G Q G P -1 Q G
17 11 12 16 syl2anc D V P G Q G P -1 Q G
18 coass P P -1 Q = P P -1 Q
19 2 1 symgbasf1o P G P : D 1-1 onto D
20 f1ococnv2 P : D 1-1 onto D P P -1 = I D
21 8 19 20 3syl D V P G Q G P P -1 = I D
22 21 coeq1d D V P G Q G P P -1 Q = I D Q
23 18 22 eqtr3id D V P G Q G P P -1 Q = I D Q
24 2 1 symgbasf1o Q G Q : D 1-1 onto D
25 f1of Q : D 1-1 onto D Q : D D
26 12 24 25 3syl D V P G Q G Q : D D
27 fcoi2 Q : D D I D Q = Q
28 26 27 syl D V P G Q G I D Q = Q
29 23 28 eqtr2d D V P G Q G Q = P P -1 Q
30 simpr D V P G Q G p G Q = P p Q = P p
31 30 coeq2d D V P G Q G p G Q = P p P -1 Q = P -1 P p
32 coass P -1 P p = P -1 P p
33 f1ococnv1 P : D 1-1 onto D P -1 P = I D
34 8 19 33 3syl D V P G Q G P -1 P = I D
35 34 coeq1d D V P G Q G P -1 P p = I D p
36 35 ad2antrr D V P G Q G p G Q = P p P -1 P p = I D p
37 32 36 eqtr3id D V P G Q G p G Q = P p P -1 P p = I D p
38 simplr D V P G Q G p G Q = P p p G
39 2 1 symgbasf1o p G p : D 1-1 onto D
40 f1of p : D 1-1 onto D p : D D
41 38 39 40 3syl D V P G Q G p G Q = P p p : D D
42 fcoi2 p : D D I D p = p
43 41 42 syl D V P G Q G p G Q = P p I D p = p
44 31 37 43 3eqtrrd D V P G Q G p G Q = P p p = P -1 Q
45 44 ex D V P G Q G p G Q = P p p = P -1 Q
46 45 ralrimiva D V P G Q G p G Q = P p p = P -1 Q
47 coeq2 p = P -1 Q P p = P P -1 Q
48 47 eqeq2d p = P -1 Q Q = P p Q = P P -1 Q
49 48 eqreu P -1 Q G Q = P P -1 Q p G Q = P p p = P -1 Q ∃! p G Q = P p
50 17 29 46 49 syl3anc D V P G Q G ∃! p G Q = P p