Metamath Proof Explorer


Theorem taylf

Description: The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s φS
taylfval.f φF:A
taylfval.a φAS
taylfval.n φN0N=+∞
taylfval.b φk0NBdomSDnFk
taylfval.t T=NSTaylFB
Assertion taylf φT:domT

Proof

Step Hyp Ref Expression
1 taylfval.s φS
2 taylfval.f φF:A
3 taylfval.a φAS
4 taylfval.n φN0N=+∞
5 taylfval.b φk0NBdomSDnFk
6 taylfval.t T=NSTaylFB
7 1 2 3 4 5 6 taylfval φT=xx×fldtsumsk0NSDnFkBk!xBk
8 simpr φxx
9 8 snssd φxx
10 1 2 3 4 5 taylfvallem φxfldtsumsk0NSDnFkBk!xBk
11 xpss12 xfldtsumsk0NSDnFkBk!xBkx×fldtsumsk0NSDnFkBk!xBk×
12 9 10 11 syl2anc φxx×fldtsumsk0NSDnFkBk!xBk×
13 12 ralrimiva φxx×fldtsumsk0NSDnFkBk!xBk×
14 iunss xx×fldtsumsk0NSDnFkBk!xBk×xx×fldtsumsk0NSDnFkBk!xBk×
15 13 14 sylibr φxx×fldtsumsk0NSDnFkBk!xBk×
16 7 15 eqsstrd φT×
17 relxp Rel×
18 relss T×Rel×RelT
19 16 17 18 mpisyl φRelT
20 1 2 3 4 5 6 eltayl φxTyxyfldtsumsk0NSDnFkBk!xBk
21 20 biimpd φxTyxyfldtsumsk0NSDnFkBk!xBk
22 21 alrimiv φyxTyxyfldtsumsk0NSDnFkBk!xBk
23 cnfldbas =Basefld
24 cnring fldRing
25 ringcmn fldRingfldCMnd
26 24 25 mp1i φxfldCMnd
27 cnfldtps fldTopSp
28 27 a1i φxfldTopSp
29 ovex 0NV
30 29 inex1 0NV
31 30 a1i φx0NV
32 1 2 3 4 5 taylfvallem1 φxk0NSDnFkBk!xBk
33 32 fmpttd φxk0NSDnFkBk!xBk:0N
34 eqid TopOpenfld=TopOpenfld
35 34 cnfldhaus TopOpenfldHaus
36 35 a1i φxTopOpenfldHaus
37 23 26 28 31 33 34 36 haustsms φx*yyfldtsumsk0NSDnFkBk!xBk
38 37 ex φx*yyfldtsumsk0NSDnFkBk!xBk
39 moanimv *yxyfldtsumsk0NSDnFkBk!xBkx*yyfldtsumsk0NSDnFkBk!xBk
40 38 39 sylibr φ*yxyfldtsumsk0NSDnFkBk!xBk
41 moim yxTyxyfldtsumsk0NSDnFkBk!xBk*yxyfldtsumsk0NSDnFkBk!xBk*yxTy
42 22 40 41 sylc φ*yxTy
43 42 alrimiv φx*yxTy
44 dffun6 FunTRelTx*yxTy
45 19 43 44 sylanbrc φFunT
46 45 funfnd φTFndomT
47 rnss T×ranTran×
48 16 47 syl φranTran×
49 rnxpss ran×
50 48 49 sstrdi φranT
51 df-f T:domTTFndomTranT
52 46 50 51 sylanbrc φT:domT