Description: The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | taylfval.s | |
|
taylfval.f | |
||
taylfval.a | |
||
taylfval.n | |
||
taylfval.b | |
||
taylfval.t | |
||
Assertion | taylf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | taylfval.s | |
|
2 | taylfval.f | |
|
3 | taylfval.a | |
|
4 | taylfval.n | |
|
5 | taylfval.b | |
|
6 | taylfval.t | |
|
7 | 1 2 3 4 5 6 | taylfval | |
8 | simpr | |
|
9 | 8 | snssd | |
10 | 1 2 3 4 5 | taylfvallem | |
11 | xpss12 | |
|
12 | 9 10 11 | syl2anc | |
13 | 12 | ralrimiva | |
14 | iunss | |
|
15 | 13 14 | sylibr | |
16 | 7 15 | eqsstrd | |
17 | relxp | |
|
18 | relss | |
|
19 | 16 17 18 | mpisyl | |
20 | 1 2 3 4 5 6 | eltayl | |
21 | 20 | biimpd | |
22 | 21 | alrimiv | |
23 | cnfldbas | |
|
24 | cnring | |
|
25 | ringcmn | |
|
26 | 24 25 | mp1i | |
27 | cnfldtps | |
|
28 | 27 | a1i | |
29 | ovex | |
|
30 | 29 | inex1 | |
31 | 30 | a1i | |
32 | 1 2 3 4 5 | taylfvallem1 | |
33 | 32 | fmpttd | |
34 | eqid | |
|
35 | 34 | cnfldhaus | |
36 | 35 | a1i | |
37 | 23 26 28 31 33 34 36 | haustsms | |
38 | 37 | ex | |
39 | moanimv | |
|
40 | 38 39 | sylibr | |
41 | moim | |
|
42 | 22 40 41 | sylc | |
43 | 42 | alrimiv | |
44 | dffun6 | |
|
45 | 19 43 44 | sylanbrc | |
46 | 45 | funfnd | |
47 | rnss | |
|
48 | 16 47 | syl | |
49 | rnxpss | |
|
50 | 48 49 | sstrdi | |
51 | df-f | |
|
52 | 46 50 51 | sylanbrc | |