Metamath Proof Explorer


Theorem tendo0mulr

Description: Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 13-Feb-2014)

Ref Expression
Hypotheses tendoid0.b B=BaseK
tendoid0.h H=LHypK
tendoid0.t T=LTrnKW
tendoid0.e E=TEndoKW
tendoid0.o O=fTIB
Assertion tendo0mulr KHLWHUEUO=O

Proof

Step Hyp Ref Expression
1 tendoid0.b B=BaseK
2 tendoid0.h H=LHypK
3 tendoid0.t T=LTrnKW
4 tendoid0.e E=TEndoKW
5 tendoid0.o O=fTIB
6 1 2 3 cdlemftr0 KHLWHgTgIB
7 6 adantr KHLWHUEgTgIB
8 simpll KHLWHUEgTgIBKHLWH
9 simplr KHLWHUEgTgIBUE
10 1 2 3 4 5 tendo0cl KHLWHOE
11 10 ad2antrr KHLWHUEgTgIBOE
12 2 4 tendococl KHLWHUEOEUOE
13 8 9 11 12 syl3anc KHLWHUEgTgIBUOE
14 5 1 tendo02 gTOg=IB
15 14 ad2antrl KHLWHUEgTgIBOg=IB
16 15 fveq2d KHLWHUEgTgIBUOg=UIB
17 1 2 4 tendoid KHLWHUEUIB=IB
18 17 adantr KHLWHUEgTgIBUIB=IB
19 16 18 eqtrd KHLWHUEgTgIBUOg=IB
20 simprl KHLWHUEgTgIBgT
21 2 3 4 tendocoval KHLWHUEOEgTUOg=UOg
22 8 9 11 20 21 syl121anc KHLWHUEgTgIBUOg=UOg
23 19 22 15 3eqtr4d KHLWHUEgTgIBUOg=Og
24 simpr KHLWHUEgTgIBgTgIB
25 1 2 3 4 tendocan KHLWHUOEOEUOg=OggTgIBUO=O
26 8 13 11 23 24 25 syl131anc KHLWHUEgTgIBUO=O
27 7 26 rexlimddv KHLWHUEUO=O