Description: Show that a basis generates a topology. Remark in Munkres p. 79. (Contributed by NM, 17-Jul-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | tgcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss | |
|
2 | 1 | adantl | |
3 | unitg | |
|
4 | 3 | adantr | |
5 | 2 4 | sseqtrd | |
6 | eluni2 | |
|
7 | ssel2 | |
|
8 | eltg2b | |
|
9 | rsp | |
|
10 | 8 9 | syl6bi | |
11 | 10 | imp31 | |
12 | 11 | an32s | |
13 | 7 12 | sylan2 | |
14 | 13 | an42s | |
15 | elssuni | |
|
16 | sstr2 | |
|
17 | 15 16 | syl5com | |
18 | 17 | anim2d | |
19 | 18 | reximdv | |
20 | 19 | ad2antrl | |
21 | 14 20 | mpd | |
22 | 21 | rexlimdvaa | |
23 | 6 22 | biimtrid | |
24 | 23 | ralrimiv | |
25 | 5 24 | jca | |
26 | 25 | ex | |
27 | eltg2 | |
|
28 | 26 27 | sylibrd | |
29 | 28 | alrimiv | |
30 | inss1 | |
|
31 | tg1 | |
|
32 | 30 31 | sstrid | |
33 | 32 | ad2antrl | |
34 | eltg2 | |
|
35 | 34 | simplbda | |
36 | rsp | |
|
37 | 35 36 | syl | |
38 | eltg2 | |
|
39 | 38 | simplbda | |
40 | rsp | |
|
41 | 39 40 | syl | |
42 | 37 41 | im2anan9 | |
43 | elin | |
|
44 | reeanv | |
|
45 | 42 43 44 | 3imtr4g | |
46 | 45 | anandis | |
47 | elin | |
|
48 | 47 | biimpri | |
49 | ss2in | |
|
50 | 48 49 | anim12i | |
51 | 50 | an4s | |
52 | basis2 | |
|
53 | 52 | adantllr | |
54 | 53 | adantrrr | |
55 | sstr2 | |
|
56 | 55 | com12 | |
57 | 56 | anim2d | |
58 | 57 | reximdv | |
59 | 58 | adantl | |
60 | 59 | ad2antll | |
61 | 54 60 | mpd | |
62 | 51 61 | sylanr2 | |
63 | 62 | rexlimdvaa | |
64 | 63 | rexlimdva | |
65 | 64 | ex | |
66 | 65 | a2d | |
67 | 66 | imp | |
68 | 46 67 | syldan | |
69 | 68 | ralrimiv | |
70 | 33 69 | jca | |
71 | 70 | ex | |
72 | eltg2 | |
|
73 | 71 72 | sylibrd | |
74 | 73 | ralrimivv | |
75 | fvex | |
|
76 | istopg | |
|
77 | 75 76 | ax-mp | |
78 | 29 74 77 | sylanbrc | |