Metamath Proof Explorer


Theorem tlmtgp

Description: A topological vector space is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion tlmtgp W TopMod W TopGrp

Proof

Step Hyp Ref Expression
1 tlmlmod W TopMod W LMod
2 lmodgrp W LMod W Grp
3 1 2 syl W TopMod W Grp
4 tlmtmd W TopMod W TopMnd
5 eqid Base W = Base W
6 eqid inv g W = inv g W
7 5 6 grpinvf W Grp inv g W : Base W Base W
8 3 7 syl W TopMod inv g W : Base W Base W
9 8 feqmptd W TopMod inv g W = x Base W inv g W x
10 eqid Scalar W = Scalar W
11 eqid W = W
12 eqid 1 Scalar W = 1 Scalar W
13 eqid inv g Scalar W = inv g Scalar W
14 5 6 10 11 12 13 lmodvneg1 W LMod x Base W inv g Scalar W 1 Scalar W W x = inv g W x
15 1 14 sylan W TopMod x Base W inv g Scalar W 1 Scalar W W x = inv g W x
16 15 mpteq2dva W TopMod x Base W inv g Scalar W 1 Scalar W W x = x Base W inv g W x
17 9 16 eqtr4d W TopMod inv g W = x Base W inv g Scalar W 1 Scalar W W x
18 eqid TopOpen W = TopOpen W
19 eqid TopOpen Scalar W = TopOpen Scalar W
20 id W TopMod W TopMod
21 tlmtps W TopMod W TopSp
22 5 18 istps W TopSp TopOpen W TopOn Base W
23 21 22 sylib W TopMod TopOpen W TopOn Base W
24 10 tlmscatps W TopMod Scalar W TopSp
25 eqid Base Scalar W = Base Scalar W
26 25 19 istps Scalar W TopSp TopOpen Scalar W TopOn Base Scalar W
27 24 26 sylib W TopMod TopOpen Scalar W TopOn Base Scalar W
28 10 lmodring W LMod Scalar W Ring
29 1 28 syl W TopMod Scalar W Ring
30 ringgrp Scalar W Ring Scalar W Grp
31 29 30 syl W TopMod Scalar W Grp
32 25 12 ringidcl Scalar W Ring 1 Scalar W Base Scalar W
33 29 32 syl W TopMod 1 Scalar W Base Scalar W
34 25 13 grpinvcl Scalar W Grp 1 Scalar W Base Scalar W inv g Scalar W 1 Scalar W Base Scalar W
35 31 33 34 syl2anc W TopMod inv g Scalar W 1 Scalar W Base Scalar W
36 23 27 35 cnmptc W TopMod x Base W inv g Scalar W 1 Scalar W TopOpen W Cn TopOpen Scalar W
37 23 cnmptid W TopMod x Base W x TopOpen W Cn TopOpen W
38 10 11 18 19 20 23 36 37 cnmpt1vsca W TopMod x Base W inv g Scalar W 1 Scalar W W x TopOpen W Cn TopOpen W
39 17 38 eqeltrd W TopMod inv g W TopOpen W Cn TopOpen W
40 18 6 istgp W TopGrp W Grp W TopMnd inv g W TopOpen W Cn TopOpen W
41 3 4 39 40 syl3anbrc W TopMod W TopGrp