Metamath Proof Explorer


Theorem trlcoat

Description: The trace of a composition of two translations is an atom if their traces are different. (Contributed by NM, 15-Jun-2013)

Ref Expression
Hypotheses trlcoat.a A=AtomsK
trlcoat.h H=LHypK
trlcoat.t T=LTrnKW
trlcoat.r R=trLKW
Assertion trlcoat KHLWHFTGTRFRGRFGA

Proof

Step Hyp Ref Expression
1 trlcoat.a A=AtomsK
2 trlcoat.h H=LHypK
3 trlcoat.t T=LTrnKW
4 trlcoat.r R=trLKW
5 2 3 ltrnco KHLWHFTGTFGT
6 5 3expb KHLWHFTGTFGT
7 eqid BaseK=BaseK
8 eqid 0.K=0.K
9 7 8 2 3 4 trlid0b KHLWHFGTFG=IBaseKRFG=0.K
10 6 9 syldan KHLWHFTGTFG=IBaseKRFG=0.K
11 coass F-1FG=F-1FG
12 simpll KHLWHFTGTFG=IBaseKKHLWH
13 simplrl KHLWHFTGTFG=IBaseKFT
14 7 2 3 ltrn1o KHLWHFTF:BaseK1-1 ontoBaseK
15 12 13 14 syl2anc KHLWHFTGTFG=IBaseKF:BaseK1-1 ontoBaseK
16 f1ococnv1 F:BaseK1-1 ontoBaseKF-1F=IBaseK
17 15 16 syl KHLWHFTGTFG=IBaseKF-1F=IBaseK
18 17 coeq1d KHLWHFTGTFG=IBaseKF-1FG=IBaseKG
19 coeq2 FG=IBaseKF-1FG=F-1IBaseK
20 19 adantl KHLWHFTGTFG=IBaseKF-1FG=F-1IBaseK
21 11 18 20 3eqtr3a KHLWHFTGTFG=IBaseKIBaseKG=F-1IBaseK
22 simplrr KHLWHFTGTFG=IBaseKGT
23 7 2 3 ltrn1o KHLWHGTG:BaseK1-1 ontoBaseK
24 12 22 23 syl2anc KHLWHFTGTFG=IBaseKG:BaseK1-1 ontoBaseK
25 f1of G:BaseK1-1 ontoBaseKG:BaseKBaseK
26 fcoi2 G:BaseKBaseKIBaseKG=G
27 24 25 26 3syl KHLWHFTGTFG=IBaseKIBaseKG=G
28 2 3 ltrncnv KHLWHFTF-1T
29 12 13 28 syl2anc KHLWHFTGTFG=IBaseKF-1T
30 7 2 3 ltrn1o KHLWHF-1TF-1:BaseK1-1 ontoBaseK
31 12 29 30 syl2anc KHLWHFTGTFG=IBaseKF-1:BaseK1-1 ontoBaseK
32 f1of F-1:BaseK1-1 ontoBaseKF-1:BaseKBaseK
33 fcoi1 F-1:BaseKBaseKF-1IBaseK=F-1
34 31 32 33 3syl KHLWHFTGTFG=IBaseKF-1IBaseK=F-1
35 21 27 34 3eqtr3d KHLWHFTGTFG=IBaseKG=F-1
36 35 fveq2d KHLWHFTGTFG=IBaseKRG=RF-1
37 2 3 4 trlcnv KHLWHFTRF-1=RF
38 12 13 37 syl2anc KHLWHFTGTFG=IBaseKRF-1=RF
39 36 38 eqtr2d KHLWHFTGTFG=IBaseKRF=RG
40 39 ex KHLWHFTGTFG=IBaseKRF=RG
41 10 40 sylbird KHLWHFTGTRFG=0.KRF=RG
42 41 necon3d KHLWHFTGTRFRGRFG0.K
43 8 1 2 3 4 trlatn0 KHLWHFGTRFGARFG0.K
44 6 43 syldan KHLWHFTGTRFGARFG0.K
45 42 44 sylibrd KHLWHFTGTRFRGRFGA
46 45 3impia KHLWHFTGTRFRGRFGA